University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effect of extracellular volume on the energy stored in transmembrane concentration gradients

        View/Open
        Final Accepted Version (PDF, 604Kb)
        Author
        Maex, Reinoud
        Attention
        2299/25403
        Abstract
        The amount of energy that can be retrieved from a concentration gradient across a membrane separating two compartments depends on the relative size of the compartments. Having a larger low-concentration compartment is in general beneficial. It is shown here analytically that the retrieved energy further increases when the high-concentration compartment shrinks during the mixing process, and a general formula is derived for the energy when the ratio of transported solvent to solute varies. These calculations are then applied to the interstitial compartment of the brain, which is rich in and ions and poor in . The reported shrinkage of this compartment, and swelling of the neurons, during oxygen deprivation is shown to enhance the energy recovered from NaCl entering the neurons. The slight loss of energy on the part of can be compensated for by the uptake of ions by glial cells. In conclusion, the present study proposes that the reported fluctuations in the size of the interstitial compartment of the brain (expansion during sleep and contraction during oxygen deprivation) optimize the amount of energy that neurons can store in, and retrieve from, their ionic concentration gradients.
        Publication date
        2021-10-15
        Published in
        Physical Review E
        Published version
        https://doi.org/10.1103/PhysRevE.104.044409
        License
        Unspecified
        Other links
        http://hdl.handle.net/2299/25403
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan