University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Wireless Network Requirements and Solutions for the Future Circular Collider: A Hostile Indoor Environment

        View/Open
        Final Accepted Version (PDF, 560Kb)
        Author
        Bannour, Ahmed
        Sun, Yichuang
        Attention
        2299/25423
        Abstract
        The European organization for nuclear research (CERN) is planning a high performance particle collider by 2050, which will update the currently used Large Hadron Collider (LHC). The design of the new experiment facility includes the definition of a suitable communication infrastructure to support the future needs of scientists. The huge amount of data collected by the measurement devices call for a data rate of at least 1Gb/s per node, while the need of timely control of instruments requires a low latency of the order of 0.01μs. Moreover, the main tunnel will be 100 km long, and will need appropriate coverage for voice and data traffic, in a special underground environment subject also to strong radiations. Reliable voice, data and video transmission in a tunnel of this length is necessary to ensure timely and localized intervention, reducing access time. In addition, using wireless communication for voice, control and data acquisition of accelerator technical systems could lead to a significant reduction in cabling costs, installation times and maintenance efforts. The communication infrastructure of the Future Circular Collider (FCC) tunnel must be able to circumvent the problems of radioactivity, omnipresent in the tunnel. Current technologies transceivers cannot transmit in such a severely radioactive environment. This is due to the immediate destruction of any active or passive equipment by radioactivity. The scope of this paper is to determine the feasibility of robust wireless transmission in an underground radioactive tunnel environment. The network infrastructure design to meet the demand will be introduced, and the performance of different wireless technologies will be evaluated.
        Publication date
        2021-11-13
        Published in
        China Communications
        Published version
        https://doi.org/10.23919/JCC.2021.10.014
        Other links
        http://hdl.handle.net/2299/25423
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan