University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effects of Moisture Absorption and Thickness Swelling Behaviors on Mechanical Performances of Carica Papaya Fiber Reinforced Polymeric Composites

        View/Open
        ACCEPTED_Manuscript_WJNF_2021_0649_SOI.pdf (PDF, 274Kb)(embargoed until 04/04/2023)
        Author
        Saravanakumaar, A.
        Senthilkumar, A.
        Rajan, B. M.
        Rajini, N.
        Ismail, S. O.
        Mohammad , F.
        Al-Lohedan, H. A.
        Attention
        2299/25466
        Abstract
        In this study, composite materials were made from Carica papaya fibers (CPFs), as a reinforcing element in polypropylene (PP), polyester (P) and epoxy (E) matrices, using compression molding technique. Experiments were conducted to evaluate the input parameters with their output responses, specifically density and thickness. Various CPF reinforced PP, P, and E composite specimens with varied fiber orientations of 0°, 45°, and 90° as well as percentages of fiber contents of 10, 20, and 30 wt.% were prepared, according to the ASTM D 570 standard. From the results obtained, it was observed that CPF/E composites with fewer fraction of CPF and orientation of 90° exhibited less water absorption throughout the whole duration of immersion. Water saturated CPF/E composite specimen, designated as E8, with orientation of 0° and fiber content of 20 wt.% showed the highest tensile, flexural strengths, and Shore D Hardness of 119, 115 MPa, and 85, respectively. Also, CPF/E composite specimen (E7) with 90° and 10 wt.% recorded the lowest tensile strength of 32 MPa, and CPF/E composite (E3) with 90° and 30 wt.% showed the lowest flexural strength of 41 MPa. Hence, it was evident that optimum CPF reinforced polymeric composite can be used for some outdoor engineering applications.
        Publication date
        2022-04-04
        Published in
        Journal of Natural Fibers
        Published version
        https://doi.org/10.1080/15440478.2022.2051668
        Other links
        http://hdl.handle.net/2299/25466
        Relations
        School of Physics, Engineering & Computer Science
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan