Show simple item record

dc.contributor.authorLane, Peter
dc.contributor.authorHelian, Na
dc.contributor.authorBodla, Muhammad Haad
dc.contributor.authorZheng, Minghua
dc.contributor.authorMoggridge, Paul
dc.contributor.editorJiménez Laredo, Juan Luis
dc.contributor.editorHidalgo, J. Ignacio
dc.contributor.editorBabaagba, Kehinde Oluwatoyin
dc.date.accessioned2022-04-27T16:00:01Z
dc.date.available2022-04-27T16:00:01Z
dc.date.issued2022-04-15
dc.identifier.citationLane , P , Helian , N , Bodla , M H , Zheng , M & Moggridge , P 2022 , Dynamic Hierarchical Structure Optimisation for Cloud Computing Job Scheduling . in J L Jiménez Laredo , J I Hidalgo & K O Babaagba (eds) , Applications of Evolutionary Computation - 25th European Conference, EvoApplications 2022, Held as Part of EvoStar 2022, Proceedings . Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , vol. 13224 LNCS , Springer Nature Link , pp. 301-316 , International Conference on the Applications of Evolutionary Computation , Spain , 20/04/22 . https://doi.org/10.1007/978-3-031-02462-7_20
dc.identifier.citationconference
dc.identifier.isbn978-3-031-02461-0
dc.identifier.isbn978-3-031-02462-7
dc.identifier.issn0302-9743
dc.identifier.otherORCID: /0000-0001-6687-0306/work/112292269
dc.identifier.otherORCID: /0000-0003-1004-1298/work/138701719
dc.identifier.urihttp://hdl.handle.net/2299/25501
dc.description© 2022 Springer Nature Switzerland AG. This is the accepted manuscript version of a conference paper that been published in final form at https://doi.org/10.1007/978-3-031-02462-7_20
dc.description.abstractThe performance of cloud computing depends in part on job-scheduling algorithms, but also on the connection structure. Previous work on this structure has mostly looked at fixed and static connections. However, we argue that such static structures cannot be optimal in all situations. We introduce a dynamic hierarchical connection system of sub-schedulers between the scheduler and servers, and use artificial intelligence search algorithms to optimise this structure. Due to its dynamic and flexible nature, this design enables the system to adaptively accommodate heterogeneous jobs and resources to make the most use of resources. Experimental results compare genetic algorithms and simulating annealing for optimising the structure, and demonstrate that a dynamic hierarchical structure can significantly reduce the total makespan (max processing time for given jobs) of the heterogeneous tasks allocated to heterogeneous resources, compared with a one-layer structure. This reduction is particularly pronounced when resources are scarce.en
dc.format.extent16
dc.format.extent797762
dc.language.isoeng
dc.publisherSpringer Nature Link
dc.relation.ispartofApplications of Evolutionary Computation - 25th European Conference, EvoApplications 2022, Held as Part of EvoStar 2022, Proceedings
dc.relation.ispartofseriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.subjectCloud computing
dc.subjectDynamic hierarchical job scheduling structure
dc.subjectGenetic algorithms
dc.subjectOptimisation
dc.subjectTheoretical Computer Science
dc.subjectGeneral Computer Science
dc.titleDynamic Hierarchical Structure Optimisation for Cloud Computing Job Schedulingen
dc.contributor.institutionCentre for Computer Science and Informatics Research
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Computer Science
dc.contributor.institutionBiocomputation Research Group
dc.date.embargoedUntil2024-04-15
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85129255467&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1007/978-3-031-02462-7_20
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record