dc.contributor.author | Babar, Hamza | |
dc.contributor.author | Wu, Hongwei | |
dc.contributor.author | Ali, Hafiz Muhammad | |
dc.contributor.author | Shah, TayyabRaza | |
dc.contributor.author | Zhang, Wenbin | |
dc.date.accessioned | 2022-06-14T09:45:03Z | |
dc.date.available | 2022-06-14T09:45:03Z | |
dc.date.issued | 2022-09-15 | |
dc.identifier.citation | Babar , H , Wu , H , Ali , H M , Shah , T & Zhang , W 2022 , ' Staggered oriented airfoil shaped pin-fin heat sink: Investigating the efficacy of novel water based ferric oxide-silica hybrid nanofluid ' , International Journal of Heat and Mass Transfer , vol. 194 , 123085 . https://doi.org/10.1016/j.ijheatmasstransfer.2022.123085 | |
dc.identifier.issn | 0017-9310 | |
dc.identifier.other | ORCID: /0000-0002-3053-2388/work/114608163 | |
dc.identifier.uri | http://hdl.handle.net/2299/25558 | |
dc.description | © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) | |
dc.description.abstract | Nowadays, electronic components are one of the essential parts of almost every smart device. To efficiently transfer the desired amount of heat, recent studies have focused on investigating the potential of advanced thermal coolants and heat sink configurations. Current study reveals the potential of novel water-based hybrid nanofluid of silica (SiO2) and ferric oxide (Fe2O3) for cooling high-heat-generating electronic devices. The experimental work was conducted to inspect the heat transfer characteristics of a uniquely designed staggered oriented airfoil shaped pin-fin heat sink employing Fe2O3-SiO2 hybrid nanofluid with different mixture ratios (25%:75%), (50%:50%), (75%:25%). Airfoil shaped pin-fins offer less resistance to fluid flow and maximum effective area due to their unique shape and delayed separation of fluid at the rear end. All the mixture ratios were tested at three different heating powers (75, 100, 125 W) with varying Reynolds number in laminar flow regime. Experimental results revealed that the fluid having a mixture ratio of 50:50 showed the least thermal resistance followed by 25:75 and 75:25. Maximum enhancement of 17.65% in average Nusselt number was observed against the heating power of 75W. Pumping power was found to increase with the supplementation of nanoparticles in base fluid, while a little variation was observed among different mixture ratios. Finally, the results were compared with recently published studies, which revealed that the airfoil shaped fins have better thermal characteristics and offer less resistance to fluid flow. | en |
dc.format.extent | 20 | |
dc.format.extent | 4577661 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Journal of Heat and Mass Transfer | |
dc.title | Staggered oriented airfoil shaped pin-fin heat sink: Investigating the efficacy of novel water based ferric oxide-silica hybrid nanofluid | en |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Centre for Engineering Research | |
dc.contributor.institution | Energy and Sustainable Design Research Group | |
dc.contributor.institution | Centre for Climate Change Research (C3R) | |
dc.contributor.institution | Department of Engineering and Technology | |
dc.contributor.institution | ECS Engineering and Technology VLs | |
dc.contributor.institution | Centre for Future Societies Research | |
dc.description.status | Peer reviewed | |
rioxxterms.versionofrecord | 10.1016/j.ijheatmasstransfer.2022.123085 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |