University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        A Novel Ensemble Machine Learning and an Evolutionary Algorithm in Modeling the COVID-19 Epidemic and Optimizing Government Policies

        View/Open
        Epidemiology.pdf (PDF, 189Kb)
        Author
        Tayarani, Mohammad
        Attention
        2299/25611
        Abstract
        The spread of the COVID-19 disease has prompted a need for immediate reaction by governments to curb the pandemic. Many countries have adopted different policies and studies are performed to understand the effect of each of the policies on the growth rate of the infected cases. In this article, the data about the policies taken by all countries at each date, and the effect of the policies on the growth rate of the pandemic are used to build a model of the pandemic's behavior. The model takes as input a set of policies and predicts the growth rate of the pandemic. Then, a population-based multi objective optimization algorithm is developed, which uses the model to search through the policy space and finds a set of policies that minimize the cost induced to the society due to the policies and the growth rate of the pandemic. Because of the complexity of the modeling problem and the uncertainty in measuring the growth rate of the pandemic via the models, an ensemble learning algorithm is proposed in this article to improve the performance of individual learning algorithms. The ensemble consists of ten learning algorithms and a metamodel algorithm that is built to predict the accuracy of each learning algorithm for a given data record. The metamodel is a set of support vector machine (SVM) algorithms that is used in the aggregation phase of the ensemble algorithm. Because there is uncertainty in measuring the growth rate via the models, a landscape smoothing operator is proposed in the optimization process, which aims at reducing uncertainty. The algorithm is tested on open access data online and experiments on the ensemble learning and the policy optimization algorithms are performed.
        Publication date
        2022-02-04
        Published in
        IEEE Transactions on Systems, Man, and Cybernetics: Systems
        Published version
        https://doi.org/10.1109/TSMC.2022.3143955
        Other links
        http://hdl.handle.net/2299/25611
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan