dc.contributor.author | Ding, Ming-Yi | |
dc.contributor.author | Shi, Jian-Rong | |
dc.contributor.author | Wu, Yue | |
dc.contributor.author | Jones, Hugh R. A. | |
dc.contributor.author | Yan, Hong-liang | |
dc.contributor.author | Li, Chun-Qian | |
dc.contributor.author | Gao, Qi | |
dc.contributor.author | Chen, Tian-Yi | |
dc.contributor.author | Zhang, Jing-Hua | |
dc.contributor.author | Liu, Shuai | |
dc.contributor.author | Yan, Tai-Sheng | |
dc.contributor.author | Xie, Xiao-Jin | |
dc.date.accessioned | 2022-07-19T12:45:02Z | |
dc.date.available | 2022-07-19T12:45:02Z | |
dc.date.issued | 2022-06-23 | |
dc.identifier.citation | Ding , M-Y , Shi , J-R , Wu , Y , Jones , H R A , Yan , H , Li , C-Q , Gao , Q , Chen , T-Y , Zhang , J-H , Liu , S , Yan , T-S & Xie , X-J 2022 , ' Stellar Atmospheric Parameters of M-type Stars from LAMOST DR8 ' , Astrophysical Journal, Supplement Series , vol. 260 , no. 2 . https://doi.org/10.3847/1538-4365/ac6754 | |
dc.identifier.issn | 0067-0049 | |
dc.identifier.other | PURE: 27208341 | |
dc.identifier.other | PURE UUID: 94145b3d-393b-4b31-9103-938db97b1b51 | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/2204.09200v1 | |
dc.identifier.other | Scopus: 85133680731 | |
dc.identifier.uri | http://hdl.handle.net/2299/25628 | |
dc.description | © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/ | |
dc.description.abstract | The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) Low Resolution Spectroscopic Survey (LRS) provides massive spectroscopic data of M-type stars, and the derived stellar parameters could bring vital help to various studies. We adopt the ULySS package to perform $\chi^2$ minimization with model spectra generated from the MILES interpolator, and determine the stellar atmospheric parameters for the M-type stars from LAMOST LRS Data Release (DR) 8. Comparison with the stellar parameters from APOGEE Stellar Parameter and Chemical Abundance Pipeline (ASPCAP) suggests that most of our results have good consistency. For M dwarfs, we achieve dispersions better than 74 K, 0.19 dex and 0.16 dex for $T_{\rm eff}$, $\log{g}$ and [Fe/H], while for M giants, the internal uncertainties are 58 K, 0.32 dex and 0.26 dex, respectively. Compared to ASPCAP we also find a systematic underestimation of $\Delta {T_{\rm eff}} =$ $-$176 K for M dwarfs, and a systematic overestimation of $\Delta {\log{g}} =$ 0.30 dex for M giants. However, such differences are less significant when we make comparison with common stars from other literature, which indicates that systematic biases exist in the difference of ASPCAP and other measurements. A catalog of 763,136 spectra corresponding to 616,314 M-type stars with derived stellar parameters is presented. We determine the stellar parameters for stars with $T_{\rm eff}$ higher than 2,900 K, with $\log{g}$ from -0.24 dex to 5.9 dex. The typical precisions are 45 K, 0.25 dex and 0.22 dex, for $T_{\rm eff}$, $\log{g}$ and [Fe/H], respectively, which are estimated from the duplicate observations of the same stars. | en |
dc.format.extent | 15 | |
dc.language.iso | eng | |
dc.relation.ispartof | Astrophysical Journal, Supplement Series | |
dc.subject | astro-ph.SR | |
dc.subject | astro-ph.EP | |
dc.subject | astro-ph.GA | |
dc.title | Stellar Atmospheric Parameters of M-type Stars from LAMOST DR8 | en |
dc.contributor.institution | Centre for Astrophysics Research | |
dc.contributor.institution | Centre of Data Innovation Research | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Physics, Astronomy and Mathematics | |
dc.description.status | Peer reviewed | |
rioxxterms.version | VoR | |
rioxxterms.versionofrecord | https://doi.org/10.3847/1538-4365/ac6754 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |