Show simple item record

dc.contributor.authorPrasad, Kumar Shantanu
dc.contributor.authorJombo, Gbanaibolou
dc.contributor.authorIsmail, Sikiru O.
dc.contributor.authorCHEN, Yong Kang
dc.contributor.authorDhakal, Hom
dc.date.accessioned2022-09-07T23:02:50Z
dc.date.available2022-09-07T23:02:50Z
dc.date.issued2022-09-08
dc.identifier.citationPrasad , K S , Jombo , G , Ismail , S O , CHEN , Y K & Dhakal , H 2022 , ' Quantitative Assessment of Damage in Composites by Implementing Acousto-Ultrasonics Technique ' , Paper presented at The 3rd International Conference on Energy and Sustainable Futures (ICESF) , Coventry , United Kingdom , 7/09/22 - 8/09/22 .
dc.identifier.citationconference
dc.identifier.otherORCID: /0000-0003-1451-1736/work/118756290
dc.identifier.otherORCID: /0000-0001-6335-2191/work/118756312
dc.identifier.urihttp://hdl.handle.net/2299/25752
dc.description.abstractThis study focused on quantitative damage severity assessment in composite materials using Acousto-Ultrasonics (AU), an in-service and active non-destructive inspection technique in which Lamb waves are communicated through a damaged zone. This was done by activating a signal onto the composite material surface and acquiring the received waves after their interactions with the damage. It relied on early research that presented a series of stress wave factors (SWFs) derived from the frequency-domain of the AU data, as quantitative identifiers of the received signal. Although, the SWFs have previously been proven to determine the understanding of the spatial arrangements of the impact damage, the degree or severity of the damage inside the impact damage area has not been assessed. Therefore, the current research was a step in the right way toward that aim. AU waves were generated via a laminate with increasing concentrations of ply faults, across longitudinal length. The stress wave factors were first examined for an undamaged composite, and the SWFs were then connected with the fault concentration. The significance of the found linkages and the possible futures of quantitative assessment of the degree of damage by such relationships were examined. The stress wave factors showed clear and consistent patterns, as the fault concentration increased. With a rise in fault density, an element measuring the energy content of the waves significantly changed with R- sq(adj) = 91.33% and almost linearly, and provided a robust measurable trend, while other parameter exhibited lesser shifts with R- sq(adj) = 51.86%. The result obtained from the presented work provided a base to cost-effective and in- service measure to early detection of catastrophic failures in composite structures, including the wind turbine blades for renewable and sustainable energy generation.en
dc.format.extent7
dc.format.extent406336
dc.language.isoeng
dc.titleQuantitative Assessment of Damage in Composites by Implementing Acousto-Ultrasonics Techniqueen
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionEnergy and Sustainable Design Research Group
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionMaterials and Structures
dc.description.statusPeer reviewed
dc.date.embargoedUntil2022-09-08
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record