Show simple item record

dc.contributor.authorOlu-Ajayi, Razak
dc.contributor.authorAlaka, Hafiz
dc.contributor.authorSulaimon, Ismail
dc.contributor.authorSunmola, Funlade
dc.contributor.authorAjayi, Saheed
dc.date.accessioned2022-10-06T16:15:01Z
dc.date.available2022-10-06T16:15:01Z
dc.date.issued2022-01-01
dc.identifier.citationOlu-Ajayi , R , Alaka , H , Sulaimon , I , Sunmola , F & Ajayi , S 2022 , ' Building energy consumption prediction for residential buildings using deep learning and other machine learning techniques ' , Journal of Building Engineering (JOBE) , vol. 45 , 103406 . https://doi.org/10.1016/j.jobe.2021.103406
dc.identifier.issn2352-7102
dc.identifier.otherORCID: /0000-0003-0326-1719/work/159834889
dc.identifier.urihttp://hdl.handle.net/2299/25787
dc.description© 2021 Elsevier Ltd. All rights reserved. This is the author’s accepted version of the work, which was originally published at https://doi.org/10.1016/j.jobe.2021.103406. The author’s accepted manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.
dc.description.abstractThe high proportion of energy consumed in buildings has engendered the manifestation of many environmental problems which deploy adverse impacts on the existence of mankind. The prediction of building energy use is essentially proclaimed to be a method for energy conservation and improved decision-making towards decreasing energy usage. Also, the construction of energy efficient buildings will aid the reduction of total energy consumed in newly constructed buildings. Machine Learning (ML) method is recognised as the best suited approach for producing desired outcomes in prediction task. Hence, in several studies, ML has been applied in the field of energy consumption of operational building. However, there are not many studies investigating the suitability of ML methods for forecasting the potential building energy consumption at the early design phase to reduce the construction of more energy inefficient buildings. To address this gap, this paper presents the utilization of several machine learning techniques namely Artificial Neural Network (ANN), Gradient Boosting (GB), Deep Neural Network (DNN), Random Forest (RF), Stacking, K Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision tree (DT) and Linear Regression (LR) for predicting annual building energy consumption using a large dataset of residential buildings. This study also examines the effect of the building clusters on the model performance. The novelty of this paper is to develop a model that enables designers input key features of a building design and forecast the annual average energy consumption at the early stages of development. This result reveals DNN as the most efficient predictive model for energy use at the early design phase and this presents a motivation for building designers to utilize it before construction to make informed decision, manage and optimize design.en
dc.format.extent13
dc.format.extent410579
dc.language.isoeng
dc.relation.ispartofJournal of Building Engineering (JOBE)
dc.subjectBuilding energy consumption
dc.subjectEnergy efficiency
dc.subjectEnergy prediction
dc.subjectMachine learning
dc.subjectCivil and Structural Engineering
dc.subjectArchitecture
dc.subjectBuilding and Construction
dc.subjectSafety, Risk, Reliability and Quality
dc.subjectMechanics of Materials
dc.titleBuilding energy consumption prediction for residential buildings using deep learning and other machine learning techniquesen
dc.contributor.institutionHertfordshire Business School
dc.contributor.institutionCentre for Climate Change Research (C3R)
dc.contributor.institutionCentre for Future Societies Research
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionMaterials and Structures
dc.contributor.institutionCentre for Engineering Research
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85119172136&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1016/j.jobe.2021.103406
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record