University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Azole fungicide sensitivity and molecular mechanisms of reduced sensitivity in Irish Pyrenopeziza brassicae populations

        View/Open
        Pest_Management_Science_2022_Bucur_Azole_fungicide_sensitivity_and_molecular_mechanisms_of_reduced_sensitivity_in.pdf (PDF, 2Mb)
        Author
        Bucur, Diana
        Huang, Yongju
        Fitt, Bruce
        Kildea, Stephen
        Attention
        2299/25850
        Abstract
        BACKGROUND: Light leaf spot, caused by Pyrenopeziza brassicae, is amongst the most damaging diseases of winter oilseed rape(Brassica napus), and currently the sterol 14⊍-demethylase (CYP51) inhibitors (azoles) represent the main class of fungicides used to control light leaf spot development. However, a shift in sensitivity to azole fungicides in P. brassicae populations has been observed in different European countries, including Ireland. RESULTS: To assess the sensitivity status of Irish P. brassicae populations to azole fungicides, three collections of P. brassicae from 2018–2020 were tested in vitro against tebuconazole and prothioconazole-desthio, and the PbCYP51 gene targeted by this class of fungicides was genotyped in different isolates. A change in sensitivity to azole fungicides was observed and differences in sensitivity to tebuconazole between Irish populations were present. There were two substitutions within PbCYP51 (G460Sand S508T) and inserts of different sizes in its promoter region. The presence of the G460S/S508T double mutant was reported for the first time, and the diversity in insert size was greater than previously known. Compared to wild type isolates, those carrying G460S or S508T were less sensitive to both fungicides and, where inserts were also identified, they further reduced sensitivity to azole fungicides. CONCLUSIONS: The results of this study suggest that azole fungicides are still very effective in controlling light leaf spot in Ireland. However, using azole fungicides in mixtures of fungicides with different modes of action is recommended
        Publication date
        2022-10-09
        Published in
        Pest Management Science
        Published version
        https://doi.org/10.1002/ps.7219
        Other links
        http://hdl.handle.net/2299/25850
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan