University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        An intergalactic medium temperature from a giant radio galaxy

        View/Open
        stac2948.pdf (PDF, 3Mb)
        Author
        Oei, Martijn S. S. L.
        Weeren, Reinout J. van
        Hardcastle, Martin J.
        Vazza, Franco
        Shimwell, Tim W.
        Leclercq, Florent
        Brüggen, Marcus
        Röttgering, Huub J. A.
        Attention
        2299/25914
        Abstract
        The warm-hot intergalactic medium (warm-hot IGM, or WHIM) pervades the filaments of the Cosmic Web and harbours half of the Universe's baryons. The WHIM's thermodynamic properties are notoriously hard to measure. Here we estimate a galaxy group - WHIM boundary temperature using a new method. In particular, we use a radio image of the giant radio galaxy (giant RG, or GRG) created by NGC 6185, a massive nearby spiral. We analyse this extraordinary object with a Bayesian 3D lobe model and deduce an equipartition pressure $P_\mathrm{eq} = 6 \cdot 10^{-16}\ \mathrm{Pa}$ -- among the lowest found in RGs yet. Using an X-ray-based statistical conversion for Fanaroff-Riley II RGs, we find a true lobe pressure $P = 1.5\substack{+1.7\\-0.4}\cdot 10^{-15}\ \mathrm{Pa}$. Cosmic Web reconstructions, group catalogues, and MHD simulations furthermore imply an $\mathrm{Mpc}$-scale IGM density $1 + \delta_\mathrm{IGM} = 40\substack{+30\\-10}$. The buoyantly rising lobes are crushed by the IGM at their inner side, where an approximate balance between IGM and lobe pressure occurs: $P_\mathrm{IGM} \approx P$. The ideal gas law then suggests an IGM temperature $T_\mathrm{IGM} = 11\substack{+12\\-5} \cdot 10^6\ \mathrm{K}$, or $k_\mathrm{B}T_\mathrm{IGM} = 0.9\substack{+1.0\\-0.4}\ \mathrm{keV}$, at the virial radius -- consistent with X-ray-derived temperatures of similarly massive groups. Interestingly, the method is not performing at its limit: in principle, estimates $T_\mathrm{IGM} \sim 4 \cdot 10^6\ \mathrm{K}$ are already possible -- rivalling the lowest X-ray measurements available. The technique's future scope extends from galaxy group outskirts to the WHIM. In conclusion, we demonstrate that observations of GRGs in Cosmic Web filaments are finally sensitive enough to probe the thermodynamics of galaxy groups and beyond.
        Publication date
        2022-10-16
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1093/mnras/stac2948
        Other links
        http://hdl.handle.net/2299/25914
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan