University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effects of hydroxyapatite addition on the microstructure and mechanical properties of sintered magnesium matrix composites

        View/Open
        ACCEPTED_Manuscript_MTCOMM_D_22_07561R1.pdf (PDF, 3Mb)(embargoed until 10/02/2024)
        Author
        Jayasathyakawin, S.
        Ravichandran, M.
        Ismail, S. O.
        Srinivasan, D.
        Attention
        2299/26124
        Abstract
        This study focused on the microstructure and properties of magnesium alloy (Mg/3Al)-based composites, reinforced with hydroxyapatite (HA) and produced by powder metallurgy (PM) method. In this investigation, Mg alloys were reinforced on the basis of weight percentage (wt%) of HA to produce Mg3Al alloy as well as Mg3Al/3HA, Mg3Al/6HA and Mg3Al/9HAcomposite samples. Measurements were taken based on their properties, including density, hardness, compressive strength, wear rate (WR) and corrosion behaviour. Microstructural studies on the various Mg3Al/HA composites were carried out, using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). Wear behaviours of the composites were analysed with aid of Taguchi method. Worn surface analysis was performed, using SEM. From the results obtained, better wear resistance property was obtained with the sample Mg3Al/9HA.Evidently, the addition of HA content to the Mg/3Al alloy increased its mechanical strength, due to uniform distribution of HA in the matrix. From signal-to-noise (S/N) ratio analysis, it was observed that the optimum parameters were obtained at HA content of 9 wt%, speed of 2 m/s, displacement of 750 m and applied load of 5 N for minimum WR. Similarly, the optimal parameters for minimal coefficient of friction (COF) were 9 wt%, 1 m/s, 750 m and 5 N. Leveraging from these composite samples, the results obtained stand to advance knowledge on tribology of composite materials, guide the choice and application of the materials, especially where wear and friction are inevitable.
        Publication date
        2023-06-30
        Published in
        Materials Today Communications
        Published version
        https://doi.org/10.1016/j.mtcomm.2023.105582
        Other links
        http://hdl.handle.net/2299/26124
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan