A K-SVD Based Compressive Sensing Method for Visual Chaotic Image Encryption
View/ Open
Author
Xie, Zizhao
Sun, Jingru
Tang, Yiping
Tang, Xin
Simpson, Oluyomi
Sun, Yichuang
Attention
2299/26185
Abstract
The visually secure image encryption scheme is an effective image encryption method, which embeds an encrypted image into a visual image to realize a secure and secret image transfer. This paper proposes a merging compression and encryption chaos image visual encryption scheme. First, a dictionary matrix D is constructed with the plain image by the K-SVD algorithm, which can encrypt the image while sparsing. Second, an improved Zeraoulia-Sprott chaotic map and logistic map are employed to generate three S-Boxes, which are used to complete scrambling, diffusion, and embedding operations. The secret keys of this scheme contain the initial value of the chaotic system and the dictionary matrix D, which significantly increases the key space, plain image correlation, and system security. Simulation shows the proposed image encryption scheme can resist most attacks and, compared with the existing scheme, the proposed scheme has a larger key space, higher plain image correlation, and better image restoration quality, improving image encryption processing efficiency and security.