dc.contributor.author | BISTRO | |
dc.date.accessioned | 2023-06-05T14:45:02Z | |
dc.date.available | 2023-06-05T14:45:02Z | |
dc.date.issued | 2022-02-22 | |
dc.identifier.citation | BISTRO 2022 , ' B-fields in Star-Forming Region Observations (BISTRO) : Magnetic Fields in the Filamentary Structures of Serpens Main ' , The Astrophysical Journal , vol. 926 , pp. 123-135 . https://doi.org/10.3847/1538-4357/ac4bbe | |
dc.identifier.issn | 0004-637X | |
dc.identifier.other | ArXiv: http://arxiv.org/abs/2201.05059v1 | |
dc.identifier.other | ORCID: /0000-0002-2859-4600/work/136649324 | |
dc.identifier.uri | http://hdl.handle.net/2299/26391 | |
dc.description | © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/ | |
dc.description.abstract | We present 850 $\mu$m polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT) as part of the B-fields In STar-forming Region Observations (BISTRO) survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less dense filamentary structures where $N_{H_2} < 0.93\times 10^{22}$ cm$^{-2}$ (magnetic fields perpendicular to density gradients), while being perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at $N_{H_2} \approx 4.6 \times 10^{22}$ cm$^{-2}$. This can be interpreted as a signature of core formation. At $N_{H_2} \approx 16 \times 10^{22}$ cm$^{-2}$ magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments ($B_{POS} = 60-300~\mu$G)) using the Davis-Chandrasekhar-Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities. | en |
dc.format.extent | 13 | |
dc.format.extent | 1715462 | |
dc.language.iso | eng | |
dc.relation.ispartof | The Astrophysical Journal | |
dc.subject | astro-ph.GA | |
dc.subject | astro-ph.SR | |
dc.title | B-fields in Star-Forming Region Observations (BISTRO) : Magnetic Fields in the Filamentary Structures of Serpens Main | en |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Physics, Astronomy and Mathematics | |
dc.contributor.institution | Centre for Astrophysics Research (CAR) | |
dc.description.status | Peer reviewed | |
rioxxterms.versionofrecord | 10.3847/1538-4357/ac4bbe | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |