University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Mechanism of Lipoxygenase Inactivation by the Linoleic Acid Analogue Octadeca-9,12-diynoic Acid

        Author
        Schilstra, M.
        Nieuwenhuizen, W.F.
        Veldink, G.A.
        Vliegenthart, J.F.G.
        Attention
        2299/2646
        Abstract
        During the irreversible inactivation of soybean Fe(III)-lipoxygenase [Fe(III)-LOX] by octadeca-9,12-diynoic acid (ODYA), significant quantities of 11-oxooctadeca-9,12-diynoic acid (11-oxo-ODYA) are formed [Nieuwenhuizen, W. F., et al. (1995) Biochemistry 34, 10538−10545]. To elucidate the inactivation mechanism, a quantitative study into the relationship between the inactivation and 11-oxo-ODYA formation was carried out. The following observations were made. (1) LOX (0.84 μM) was completely inactivated by 10 to 80 μM ODYA. However, at ODYA concentrations greater than 100 μM, LOX was only partially inactivated, and there was no inactivation at all at ODYA concentrations above 750 μM. The average number of turnovers in which 11-oxo-ODYA was formed increased from 1.2 to 12 when the ODYA concentration increased from 1 to 50 μM and then decreased again to 1.2 at 1000 μM ODYA. (2) The enzyme that was not irreversibly inactivated by ODYA was in the Fe(III) form at ODYA concentrations below 10 μM but in the Fe(II) form at ODYA concentrations greater than 100 μM. (3) In the presence of 750 μM ODYA and 25 μM 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid, all of the enzyme was inactivated. On the basis of these results, it is proposed that the dioxygenation product of ODYA is 11-hydroperoxyoctadeca-9,12-diynoic acid (11-HP-ODYA), which can convert Fe(II)-LOX into its Fe(III) form. However, 11-HP-ODYA is converted into 11-oxo-ODYA, which cannot perform the oxidation. It is proposed that the inactivating agent is either 11-HP-ODYA or the 11-peroxy-octadeca-9,12-diynoic acid radical (11-peroxy-ODYA radical), formed from the ODYA radical and O2. The oxidation of Fe(II)-LOX into its Fe(III) form as well as the inactivation of Fe(III)-LOX is competitively inhibited by ODYA.
        Publication date
        1996
        Published in
        Biochemistry
        Published version
        https://doi.org/10.1021/bi952685z
        Other links
        http://hdl.handle.net/2299/2646
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan