University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Effects of the Tubulin-Colchicine Complex on Microtubule Dynamic Instability

        Author
        Vandecandelaere, A.
        Martin, S.R.
        Schilstra, M.
        Bayley, P.M.
        Attention
        2299/2649
        Abstract
        The effects of the tubulin-olchicine complex (Tu-Col) on the dynamic behavior of microtubules have been examined under steady-state conditions in vitro. The addition of Tu-Col to tubulin microtubules at steady state results in only partial microtubule disassembly. Nevertheless, both the rate and the extent of tubulin exchange into microtubules are markedly suppressed by concentrations of Tu-Col which are low relative to the total amount of free tubulin. In addition, the time-dependent changes in microtubule length distribution, characteristic of dynamic instability, are suppressed by the addition of Tu-Col. Examination by video-enhanced dark-field microscopy of individual microtubules in the presence of Tu-Col shows that the principal effect of this complex is to reduce the growth rate at both ends of the microtubule. We have used computer simulation to rationalize the action of Tu-Col in terms of its effects on the experimentally observable parameters, namely, the rates of growth and shortening and the mean lifetimes of growth and shortening, which provide an empirical description of the dynamic behavior of microtubules. The results have been interpreted within the framework of the lateral cap formulation for microtubule dynamic instability [Martin, S. R., Schilstra, M. J., & Bayley, P. M. (1993) Biophys. J. 65, 578-5961, The simplest model mechanism requires only that Tu-Col binds to the microtubule end and inhibits further addition reactions in either the 5-start or the %start direction of the microtubule lattice. Monte Carlo simulations show that Tu-Col can, in this way, cause major suppression of the dynamic transitions of microtubules without inducing bulk microtubule disassembly. This type of mechanism could be important for the regulation of microtubule dynamics in vivo.
        Publication date
        1994
        Published in
        Biochemistry
        Published version
        https://doi.org/10.1021/bi00176a007
        Other links
        http://hdl.handle.net/2299/2649
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan