Show simple item record

dc.contributor.authorde Santi, Natalí S. M.
dc.contributor.authorShao, Helen
dc.contributor.authorVillaescusa-Navarro, Francisco
dc.contributor.authorAbramo, L. Raul
dc.contributor.authorTeyssier, Romain
dc.contributor.authorVillanueva-Domingo, Pablo
dc.contributor.authorNi, Yueying
dc.contributor.authorAnglés-Alcázar, Daniel
dc.contributor.authorGenel, Shy
dc.contributor.authorHernández-Martínez, Elena
dc.contributor.authorSteinwandel, Ulrich P.
dc.contributor.authorLovell, Christopher C.
dc.contributor.authorDolag, Klaus
dc.contributor.authorCastro, Tiago
dc.contributor.authorVogelsberger, Mark
dc.date.accessioned2023-07-19T17:45:01Z
dc.date.available2023-07-19T17:45:01Z
dc.date.issued2023-07-18
dc.identifier.citationde Santi , N S M , Shao , H , Villaescusa-Navarro , F , Abramo , L R , Teyssier , R , Villanueva-Domingo , P , Ni , Y , Anglés-Alcázar , D , Genel , S , Hernández-Martínez , E , Steinwandel , U P , Lovell , C C , Dolag , K , Castro , T & Vogelsberger , M 2023 , ' Robust Field-level Likelihood-free Inference with Galaxies ' , The Astrophysical Journal , vol. 952 , no. 1 , 69 , pp. 1-20 . https://doi.org/10.3847/1538-4357/acd1e2
dc.identifier.issn0004-637X
dc.identifier.otherJisc: 1215136
dc.identifier.otherpublisher-id: apjacd1e2
dc.identifier.othermanuscript: acd1e2
dc.identifier.otherother: aas45488
dc.identifier.urihttp://hdl.handle.net/2299/26525
dc.description© 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe train graph neural networks to perform field-level likelihood-free inference using galaxy catalogs from state-of-the-art hydrodynamic simulations of the CAMELS project. Our models are rotational, translational, and permutation invariant and do not impose any cut on scale. From galaxy catalogs that only contain 3D positions and radial velocities of ∼1000 galaxies in tiny (25h−1Mpc)3 volumes our models can infer the value of Ωm with approximately 12% precision. More importantly, by testing the models on galaxy catalogs from thousands of hydrodynamic simulations, each having a different efficiency of supernova and active galactic nucleus feedback, run with five different codes and subgrid models—IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE—we find that our models are robust to changes in astrophysics, subgrid physics, and subhalo/galaxy finder. Furthermore, we test our models on 1024 simulations that cover a vast region in parameter space—variations in five cosmological and 23 astrophysical parameters—finding that the model extrapolates really well. Our results indicate that the key to building a robust model is the use of both galaxy positions and velocities, suggesting that the network has likely learned an underlying physical relation that does not depend on galaxy formation and is valid on scales larger than ∼10 h −1 kpc.en
dc.format.extent20
dc.format.extent3949646
dc.language.isoeng
dc.relation.ispartofThe Astrophysical Journal
dc.subjectHydrodynamical simulations
dc.subjectMagnetohydrodynamical simulations
dc.subjectCosmology
dc.subjectCosmological parameters
dc.subjectAstrostatistics
dc.subjectAstronomy and Astrophysics
dc.subjectSpace and Planetary Science
dc.titleRobust Field-level Likelihood-free Inference with Galaxiesen
dc.contributor.institutionSchool of Computer Science
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85165671541&partnerID=8YFLogxK
rioxxterms.versionofrecord10.3847/1538-4357/acd1e2
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record