Show simple item record

dc.contributor.authorFaghih, Mahdi
dc.contributor.authorValera-medina, Agustin
dc.contributor.authorChen, Zheng
dc.contributor.authorPaykani, Amin
dc.date.accessioned2023-09-27T15:30:02Z
dc.date.available2023-09-27T15:30:02Z
dc.date.issued2023-11-30
dc.identifier.citationFaghih , M , Valera-medina , A , Chen , Z & Paykani , A 2023 , ' Effect of radiation on laminar flame speed determination in spherically propagating NH 3 -air, NH 3 /CH 4 -air and NH 3 /H 2 -air flames at normal temperature and pressure ' , Combustion and Flame , vol. 257 , 113030 . https://doi.org/10.1016/j.combustflame.2023.113030
dc.identifier.issn0010-2180
dc.identifier.otherORCID: /0000-0002-1344-5549/work/143285536
dc.identifier.urihttp://hdl.handle.net/2299/26770
dc.description© 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
dc.description.abstractThe use of spherically propagating flames is common for measuring the laminar flame speed in NH3-air, NH3/CH4-air and NH3/H2-air mixtures. However, the radiation-induced uncertainty in such mixtures has not been thoroughly investigated. Due to the low laminar flame speed of ammonia mixtures, it is anticipated that the radiation effect is considerable for such mixtures. This study aims to fill this gap by conducting numerical simulations using different chemical mechanisms and the adiabatic and optical thin radiation models to examine the effects of radiation on spherically propagating NH3-air, NH3/CH4-air and NH3/H2-air flames. The simulations are performed for mixtures at normal temperature and pressure (Tu=298 K and P = 1 atm) and wide range of equivalence ratios. The radiation-induced uncertainty in spherical flames is quantified and compared to planar flames. The importance of the radiation-induced flow and thermal effects in spherical flames is compared between different mixtures and a correlation is developed to determine the radiation-corrected flame speed for spherical NH3-air flames. Considering the radiation effect in NH3-air, it was found that using different mechanisms results in considerable discrepancies in laminar flame speed determination. Some mechanisms showed that the radiation-induced flame speed in spherical flames was underpredicted by more than two times compared to planar flames, and the radiation-induced uncertainty for lean and rich spherically propagating NH3-air flames exceeds 20%. However, the radiation-induced uncertainty at normal temperature and pressure in spherically propagating NH3/CH4-air and NH3/H2-air flames was less significant, not exceeding 11%. Finally, an updated correlation is proposed to determine the radiation-corrected flame speed for NH3-air flames that can be directly used in spherical flame experiments measuring the laminar flame speed.en
dc.format.extent12
dc.format.extent1312896
dc.language.isoeng
dc.relation.ispartofCombustion and Flame
dc.subjectLaminar flame speed
dc.subjectNH-air
dc.subjectNH/CH-air
dc.subjectNH/H-air
dc.subjectRadiation
dc.subjectSpherically propagating flame
dc.subjectGeneral Chemistry
dc.subjectGeneral Chemical Engineering
dc.subjectFuel Technology
dc.subjectEnergy Engineering and Power Technology
dc.subjectGeneral Physics and Astronomy
dc.titleEffect of radiation on laminar flame speed determination in spherically propagating NH3-air, NH3/CH4-air and NH3/H2-air flames at normal temperature and pressureen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85169827839&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1016/j.combustflame.2023.113030
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record