The JWST Hubble Sequence: The Rest-frame Optical Evolution of Galaxy Structure at 1.5 < z < 6.5
View/ Open
Author
Ferreira, Leonardo
Conselice, Christopher J.
Sazonova, Elizaveta
Ferrari, Fabricio
Caruana, Joseph
Tohill, Clár-Bríd
Lucatelli, Geferson
Adams, Nathan
Irodotou, Dimitrios
Marshall, Madeline A.
Roper, Will J.
Lovell, Christopher C.
Verma, Aprajita
Austin, Duncan
Trussler, James
Wilkins, Stephen M.
Attention
2299/26799
Abstract
We present results on the morphological and structural evolution of a total of 3956 galaxies observed with JWST at 1.5 < z < 6.5 in the JWST CEERS observations that overlap with the CANDELS EGS field. This is the biggest visually classified sample observed with JWST yet, ∼20 times larger than previous studies, and allows us to examine in detail how galaxy structure has changed over this critical epoch. All sources were classified by six individual classifiers using a simple classification scheme aimed at producing disk/spheroid/peculiar classifications, whereby we determine how the relative number of these morphologies has evolved since the Universe’s first billion years. Additionally, we explore structural and quantitative morphology measurements using Morfometryka, and show that galaxies with M * > 109 M ⊙ at z > 3 are not dominated by irregular and peculiar structures, either visually or quantitatively, as previously thought. We find a strong dominance of morphologically selected disk galaxies up to z = 6 in this mass range. We also find that the stellar mass and star formation rate densities are dominated by disk galaxies up to z ∼ 6, demonstrating that most stars in the Universe were likely formed in a disk galaxy. We compare our results to theory to show that the fraction of types we find is predicted by cosmological simulations, and that the Hubble Sequence was already in place as early as one billion years after the Big Bang. Additionally, we make our visual classifications public for the community.