Show simple item record

dc.contributor.authorBorsten, Leron
dc.contributor.authorJurčo, Branislav
dc.contributor.authorKim, Hyungrok
dc.contributor.authorMacrelli, Tommaso
dc.contributor.authorSaemann, Christian
dc.contributor.authorWolf, Martin
dc.date.accessioned2023-10-05T16:00:05Z
dc.date.available2023-10-05T16:00:05Z
dc.date.issued2023-07-28
dc.identifier.citationBorsten , L , Jurčo , B , Kim , H , Macrelli , T , Saemann , C & Wolf , M 2023 , ' Kinematic Lie Algebras From Twistor Spaces ' , Physical Review Letters , vol. 131 , no. 4 , 041603 , pp. 1-7 . https://doi.org/10.1103/PhysRevLett.131.041603
dc.identifier.issn0031-9007
dc.identifier.otherORCID: /0000-0001-9008-7725/work/143862965
dc.identifier.urihttp://hdl.handle.net/2299/26850
dc.description© The Author(s). Published by the American Physical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe analyze theories with color-kinematics duality from an algebraic perspective and find that any suchtheory has an underlying BV▪-algebra, extending the ideas of Reiterer [A homotopy BV algebra for Yang–Mills and color–kinematics, arXiv:1912.03110.]. Conversely, we show that any theory with a BV▪-algebrafeatures a kinematic Lie algebra that controls interaction vertices, both on shell and off shell. We explainthat the archetypal example of a theory with a BV▪-algebra is Chern-Simons theory, for which the resultingkinematic Lie algebra is isomorphic to the Schouten-Nijenhuis algebra on multivector fields. TheBV▪-algebra implies the known color-kinematics duality of Chern-Simons theory. Similarly, we show thatholomorphic and Cauchy-Riemann Chern-Simons theories come with BV▪-algebras and that, on theappropriate twistor spaces, these theories organize and identify kinematic Lie algebras for self-dual and fullYang-Mills theories, as well as the currents of any field theory with a twistorial description. We show thatthis result extends to the loop level under certain assumptionsen
dc.format.extent7
dc.format.extent257551
dc.language.isoeng
dc.relation.ispartofPhysical Review Letters
dc.titleKinematic Lie Algebras From Twistor Spacesen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionMathematics and Theoretical Physics
dc.description.statusPeer reviewed
dc.identifier.urlhttps://arxiv.org/abs/2211.13261
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85166737561&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1103/PhysRevLett.131.041603
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record