Nearby galaxies in the LOFAR Two-metre Sky Survey : I. Insights into the non-linearity of the radio–SFR relation
View/ Open
Author
Heesen, V.
Staffehl, M.
Basu, A.
Beck, R.
Stein, M.
Tabatabaei, F. S.
Hardcastle, M. J.
Chyży, K. T.
Shimwell, T. W.
Adebahr, B.
Beswick, R.
Bomans, D. J.
Botteon, A.
Brinks, E.
Brüggen, M.
Dettmar, R. -J.
Drabent, A.
Gasperin, F. de
Gürkan, G.
Heald, G. H.
Horellou, C.
Nikiel-Wroczynski, B.
Paladino, R.
Piotrowska, J.
Röttgering, H. J. A.
Smith, D. J. B.
Tasse, C.
Attention
2299/26948
Abstract
Context. Cosmic rays and magnetic fields are key ingredients in galaxy evolution, regulating both stellar feedback and star formation. Their properties can be studied with low-frequency radio continuum observations, free from thermal contamination. Aims. We define a sample of 76 nearby (< 30 Mpc) galaxies, with rich ancillary data in the radio continuum and infrared from the CHANG-ES and KINGFISH surveys, which will be observed with the LOFAR Two-metre Sky Survey (LoTSS) at 144 MHz. Methods. We present maps for 45 of them as part of the LoTSS data release 2 (LoTSS-DR2), where we measure integrated flux densities and study integrated and spatially resolved radio spectral indices. We investigate the radio-SFR relation, using star-formation rates (SFR) from total infrared and H $\alpha$ + 24-$\mu$m emission. Results. The radio-SFR relation at 144 MHz is clearly super-linear with $L_{144} \propto SFR^{1.4-1.5}$. The mean integrated radio spectral index between 144 and $\approx$1400 MHz is $\langle \alpha\rangle = -0.56 \pm 0.14$, in agreement with the injection spectral index for cosmic ray electrons (CRE). However, the radio spectral index maps show a variation of spectral indices with flatter spectra associated with star-forming regions and steeper spectra in galaxy outskirts and, in particular, in extra-planar regions. We found that galaxies with high star-formation rates (SFR) have steeper radio spectra; we find similar correlations with galaxy size, mass, and rotation speed. Conclusions. Galaxies that are larger and more massive are better electron calorimeters, meaning that the CRE lose a higher fraction of their energy within the galaxies. This explains the super-linear radio-SFR relation, with more massive, star-forming galaxies being radio bright. We propose a semi-calorimetric radio-SFR relation, which employs the galaxy mass as a proxy for the calorimetric efficiency.
Publication date
2022-08-08Published in
Astronomy & AstrophysicsPublished version
https://doi.org/10.1051/0004-6361/202142878Other links
http://hdl.handle.net/2299/26948Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...