Show simple item record

dc.contributor.authorShao, Helen
dc.contributor.authorde Santi, Natalí S. M.
dc.contributor.authorVillaescusa-Navarro, Francisco
dc.contributor.authorTeyssier, Romain
dc.contributor.authorNi, Yueying
dc.contributor.authorAnglés-Alcázar, Daniel
dc.contributor.authorGenel, Shy
dc.contributor.authorSteinwandel, Ulrich P.
dc.contributor.authorHernández-Martínez, Elena
dc.contributor.authorDolag, Klaus
dc.contributor.authorLovell, Christopher C.
dc.contributor.authorGarrison, Lehman H.
dc.contributor.authorVisbal, Eli
dc.contributor.authorKulkarni, Mihir
dc.contributor.authorHernquist, Lars
dc.contributor.authorCastro, Tiago
dc.contributor.authorVogelsberger, Mark
dc.date.accessioned2023-10-23T08:30:02Z
dc.date.available2023-10-23T08:30:02Z
dc.date.issued2023-10-18
dc.identifier.citationShao , H , de Santi , N S M , Villaescusa-Navarro , F , Teyssier , R , Ni , Y , Anglés-Alcázar , D , Genel , S , Steinwandel , U P , Hernández-Martínez , E , Dolag , K , Lovell , C C , Garrison , L H , Visbal , E , Kulkarni , M , Hernquist , L , Castro , T & Vogelsberger , M 2023 , ' A Universal Equation to Predict Ω m from Halo and Galaxy Catalogs ' , The Astrophysical Journal , vol. 956 , no. 2 , 149 , pp. 1-29 . https://doi.org/10.3847/1538-4357/acee6f
dc.identifier.issn0004-637X
dc.identifier.otherJisc: 1413320
dc.identifier.otherpublisher-id: apjacee6f
dc.identifier.othermanuscript: acee6f
dc.identifier.otherother: aas45422
dc.identifier.urihttp://hdl.handle.net/2299/26964
dc.description© 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe discover analytic equations that can infer the value of Ωm from the positions and velocity moduli of halo and galaxy catalogs. The equations are derived by combining a tailored graph neural network (GNN) architecture with symbolic regression. We first train the GNN on dark matter halos from Gadget N-body simulations to perform field-level likelihood-free inference, and show that our model can infer Ωm with ∼6% accuracy from halo catalogs of thousands of N-body simulations run with six different codes: Abacus, CUBEP3M, Gadget, Enzo, PKDGrav3, and Ramses. By applying symbolic regression to the different parts comprising the GNN, we derive equations that can predict Ωm from halo catalogs of simulations run with all of the above codes with accuracies similar to those of the GNN. We show that, by tuning a single free parameter, our equations can also infer the value of Ωm from galaxy catalogs of thousands of state-of-the-art hydrodynamic simulations of the CAMELS project, each with a different astrophysics model, run with five distinct codes that employ different subgrid physics: IllustrisTNG, SIMBA, Astrid, Magneticum, SWIFT-EAGLE. Furthermore, the equations also perform well when tested on galaxy catalogs from simulations covering a vast region in parameter space that samples variations in 5 cosmological and 23 astrophysical parameters. We speculate that the equations may reflect the existence of a fundamental physics relation between the phase-space distribution of generic tracers and Ωm, one that is not affected by galaxy formation physics down to scales as small as 10 h −1 kpc.en
dc.format.extent29
dc.format.extent4004722
dc.language.isoeng
dc.relation.ispartofThe Astrophysical Journal
dc.subjectCosmological parameters
dc.subjectHydrodynamical simulations
dc.subjectCosmology
dc.titleA Universal Equation to Predict Ω m from Halo and Galaxy Catalogsen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.3847/1538-4357/acee6f
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record