Show simple item record

dc.contributor.authorYoung, Charles
dc.date.accessioned2023-10-30T17:45:02Z
dc.date.available2023-10-30T17:45:02Z
dc.date.issued2021-12-15
dc.identifier.citationYoung , C 2021 , ' An Analog of the Feigin-Frenkel homomorphism for double loop algebras ' , Journal of Algebra , vol. 558 . https://doi.org/10.1016/j.jalgebra.2021.07.031
dc.identifier.issn0021-8693
dc.identifier.otherORCID: /0000-0002-7490-1122/work/145926559
dc.identifier.urihttp://hdl.handle.net/2299/27005
dc.description© 2021 Published by Elsevier Inc. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.jalgebra.2021.07.031
dc.description.abstractWe prove the existence of a homomorphism of vertex algebras, from the vacuum Verma module over the loop algebra of an untwisted affine algebra, whose construction is analogous to that of the Feigin-Frenkel homomorphism from the vacuum Verma module at critical level over an affine algebra.en
dc.format.extent1
dc.format.extent659660
dc.language.isoeng
dc.relation.ispartofJournal of Algebra
dc.titleAn Analog of the Feigin-Frenkel homomorphism for double loop algebrasen
dc.contributor.institutionMathematics and Theoretical Physics
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1016/j.jalgebra.2021.07.031
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record