dc.contributor.author | Young, Charles | |
dc.date.accessioned | 2023-10-30T17:45:02Z | |
dc.date.available | 2023-10-30T17:45:02Z | |
dc.date.issued | 2021-12-15 | |
dc.identifier.citation | Young , C 2021 , ' An Analog of the Feigin-Frenkel homomorphism for double loop algebras ' , Journal of Algebra , vol. 558 . https://doi.org/10.1016/j.jalgebra.2021.07.031 | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.other | ORCID: /0000-0002-7490-1122/work/145926559 | |
dc.identifier.uri | http://hdl.handle.net/2299/27005 | |
dc.description | © 2021 Published by Elsevier Inc. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.jalgebra.2021.07.031 | |
dc.description.abstract | We prove the existence of a homomorphism of vertex algebras, from the vacuum Verma module over the loop algebra of an untwisted affine algebra, whose construction is analogous to that of the Feigin-Frenkel homomorphism from the vacuum Verma module at critical level over an affine algebra. | en |
dc.format.extent | 1 | |
dc.format.extent | 659660 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Algebra | |
dc.title | An Analog of the Feigin-Frenkel homomorphism for double loop algebras | en |
dc.contributor.institution | Mathematics and Theoretical Physics | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Physics, Astronomy and Mathematics | |
dc.description.status | Peer reviewed | |
rioxxterms.versionofrecord | 10.1016/j.jalgebra.2021.07.031 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |