Show simple item record

dc.contributor.authorHamdan, Mutasem
dc.contributor.authorLee, Haeyoung
dc.contributor.authorTriantafyllopoulou, Dionysia
dc.contributor.authorBorralho, Rúben
dc.contributor.authorKose, Abdulkadir
dc.contributor.authorAmiri, Esmaeil
dc.contributor.authorMulvey, David
dc.contributor.authorYu, Wenjuan
dc.contributor.authorZitouni, Rafik
dc.contributor.authorPozza, Riccardo
dc.contributor.authorHunt, Bernie
dc.contributor.authorBagheri, Hamidreza
dc.contributor.authorFoh, Chuan Heng
dc.contributor.authorHeliot, Fabien
dc.contributor.authorChen, Gaojie
dc.contributor.authorXiao, Pei
dc.contributor.authorWang, Ning
dc.contributor.authorTafazolli, Rahim
dc.date.accessioned2023-11-08T15:00:01Z
dc.date.available2023-11-08T15:00:01Z
dc.date.issued2023-10-28
dc.identifier.citationHamdan , M , Lee , H , Triantafyllopoulou , D , Borralho , R , Kose , A , Amiri , E , Mulvey , D , Yu , W , Zitouni , R , Pozza , R , Hunt , B , Bagheri , H , Foh , C H , Heliot , F , Chen , G , Xiao , P , Wang , N & Tafazolli , R 2023 , ' Recent Advances in Machine Learning for Network Automation in the O-RAN ' , Sensors , vol. 23 , no. 21 , 8792 , pp. 1-35 . https://doi.org/10.3390/s23218792
dc.identifier.issn1424-3210
dc.identifier.otherORCID: /0000-0002-5760-6623/work/146413249
dc.identifier.urihttp://hdl.handle.net/2299/27102
dc.description© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractThe evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.en
dc.format.extent35
dc.format.extent1587458
dc.language.isoeng
dc.relation.ispartofSensors
dc.subjectopen radio access networks; machine learning; artificial intelligence
dc.subjectopen radio access networks
dc.subjectmachine learning
dc.subjectartificial intelligence
dc.subjectGeneral Engineering
dc.subjectAnalytical Chemistry
dc.subjectInformation Systems
dc.subjectInstrumentation
dc.subjectAtomic and Molecular Physics, and Optics
dc.subjectElectrical and Electronic Engineering
dc.subjectBiochemistry
dc.titleRecent Advances in Machine Learning for Network Automation in the O-RANen
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionCommunications and Intelligent Systems
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85176899516&partnerID=8YFLogxK
rioxxterms.versionofrecord10.3390/s23218792
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record