dc.contributor.author | Larvor, Brendan | |
dc.date.accessioned | 2023-11-15T16:30:01Z | |
dc.date.available | 2023-11-15T16:30:01Z | |
dc.date.issued | 2023-05-12 | |
dc.identifier.citation | Larvor , B 2023 , The limits of understanding and the understanding of limits : David Hume’s mathematical sources . in Research in History and Philosophy of Mathematics : The CSHPM 2021 Volume . Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques , vol. CSHPM 2022 Volume , Springer Nature , Switzerland , pp. 115-131 . https://doi.org/10.1007/978-3-031-21494-3_7 | |
dc.identifier.isbn | 978-3-031-21493-6 | |
dc.identifier.isbn | 978-3-031-21494-3 | |
dc.identifier.issn | 2662-8503 | |
dc.identifier.uri | http://hdl.handle.net/2299/27161 | |
dc.description | © 2023 © The Editor(s) and The Author(s), under exclusive license to Springer Nature Switzerland AG. This is the accepted manuscript version of a book chapter which has been published in final form at https://doi.org/10.1007/978-3-031-21494-3 | |
dc.description.abstract | David Hume devoted a long section of his Treatise of Human Nature to an attempt to refute the indivisibility of space and time. In his later Enquiry Concerning Human Understanding, he ridiculed the doctrine of infinitesimals and the paradox of the angle of contact between a circle and a tangent. Following up Hume’s mathematical references reveals the role that a handful of mathematical examples (in Hume’s case, the indivisibility of space and the angle of contact) played in the work of philosophers who (like Hume) were not otherwise interested in mathematics, and who used them to argue for either fideist or sceptical conclusions. Such paradoxes were taken to mark the limit of rational mathematical enquiry, beyond which human thought should either fall silent or surrender to religious faith. The fideist argument occurs, for example, in Malezieu’s Éléments de Géometrie, to which Hume refers indirectly in the Treatise. Hume did not seem to appreciate that while bringing rigour to the differential and integral calculus was a central problem for mathematics, the angle of contact was (by his time) a non-problem that arose in the first place only owing to the antique authority of Euclid. Following Hume’s mathematical sources thereby shows us something about the role and significance of mathematics in the wider intellectual culture of his time. A small number of isolated and fossilized puzzles became emblematic of mathematics as both rational authority and inaccessible mystery. | en |
dc.format.extent | 339968 | |
dc.language.iso | eng | |
dc.publisher | Springer Nature | |
dc.relation.ispartof | Research in History and Philosophy of Mathematics | |
dc.relation.ispartofseries | Annals of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques | |
dc.subject | mathematics | |
dc.subject | HISTORY | |
dc.subject | philosophy | |
dc.subject | Hume | |
dc.subject | Philosophy | |
dc.subject | History | |
dc.title | The limits of understanding and the understanding of limits : David Hume’s mathematical sources | en |
dc.contributor.institution | Philosophy | |
dc.contributor.institution | School of Creative Arts | |
dc.description.status | Peer reviewed | |
dc.date.embargoedUntil | 2025-05-12 | |
rioxxterms.versionofrecord | 10.1007/978-3-031-21494-3_7 | |
rioxxterms.type | Other | |
herts.preservation.rarelyaccessed | true | |