Show simple item record

dc.contributor.authorXu, Quanfeng
dc.contributor.authorShen, Shiyin
dc.contributor.authorSouza, Rafael S. de
dc.contributor.authorChen, Mi
dc.contributor.authorYe, Renhao
dc.contributor.authorShe, Yumei
dc.contributor.authorChen, Zhu
dc.contributor.authorIshida, Emille E. O.
dc.contributor.authorKrone-Martins, Alberto
dc.contributor.authorDurgesh, Rupesh
dc.date.accessioned2023-11-28T11:30:03Z
dc.date.available2023-11-28T11:30:03Z
dc.date.issued2023-12-01
dc.identifier.citationXu , Q , Shen , S , Souza , R S D , Chen , M , Ye , R , She , Y , Chen , Z , Ishida , E E O , Krone-Martins , A & Durgesh , R 2023 , ' From Images to Features: Unbiased Morphology Classification via Variational Auto-Encoders and Domain Adaptation ' , Monthly Notices of the Royal Astronomical Society , vol. 526 , no. 4 , pp. 6391–6400 . https://doi.org/10.1093/mnras/stad3181
dc.identifier.issn0035-8711
dc.identifier.otherArXiv: http://arxiv.org/abs/2303.08627v1
dc.identifier.otherORCID: /0000-0001-7207-4584/work/147917450
dc.identifier.urihttp://hdl.handle.net/2299/27221
dc.description© 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe present a novel approach for the dimensionality reduction of galaxy images by leveraging a combination of variational auto-encoders (VAEs) and domain adaptation (DA). We demonstrate the effectiveness of this approach using a sample of low-redshift galaxies with detailed morphological type labels from the Galaxy Zoo Dark Energy Camera Legacy Survey (DECaLS) project. We show that 40-dimensional latent variables can effectively reproduce most morphological features in galaxy images. To further validate the effectiveness of our approach, we utilized a classical random forest classifier on the 40-dimensional latent variables to make detailed morphology feature classifications. This approach performs similar to a direct neural network application on galaxy images. We further enhance our model by tuning the VAE network via DA using galaxies in the overlapping footprint of DECaLS and Beijing-Arizona Sky Survey + Mayall z-band Legacy Survey, enabling the unbiased application of our model to galaxy images in both surveys. We observed that DA led to even better morphological feature extraction and classification performance. Overall, this combination of VAE and DA can be applied to achieve image dimensionality reduction, defect image identification, and morphology classification in large optical surveys.en
dc.format.extent10
dc.format.extent1151153
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.subjectastro-ph.GA
dc.subjectcs.LG
dc.subjectgalaxies: disc
dc.subjectgalaxies: general
dc.subjectmethods: data analysis
dc.subjectgalaxies: bar
dc.subjecttechniques: image processing
dc.subjectgalaxies: bulges
dc.subjectAstronomy and Astrophysics
dc.subjectSpace and Planetary Science
dc.titleFrom Images to Features: Unbiased Morphology Classification via Variational Auto-Encoders and Domain Adaptationen
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85177604184&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1093/mnras/stad3181
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record