Show simple item record

dc.contributor.authorGloudemans, A. J.
dc.contributor.authorSaxena, A.
dc.contributor.authorIntema, H.
dc.contributor.authorCallingham, J. R.
dc.contributor.authorDuncan, K. J.
dc.contributor.authorRottgering, H. J. A.
dc.contributor.authorBelladitta, S.
dc.contributor.authorHardcastle, M. J.
dc.contributor.authorHarikane, Y.
dc.contributor.authorSpingola, C.
dc.date.accessioned2023-12-19T14:45:01Z
dc.date.available2023-12-19T14:45:01Z
dc.date.issued2023-10-12
dc.identifier.citationGloudemans , A J , Saxena , A , Intema , H , Callingham , J R , Duncan , K J , Rottgering , H J A , Belladitta , S , Hardcastle , M J , Harikane , Y & Spingola , C 2023 , ' No strong radio absorption detected in the low-frequency spectra of radio-loud quasars at z > 5.6 ' , Astronomy & Astrophysics , vol. 678 , no. October 2023 , A128 , pp. 1-16 . https://doi.org/10.1051/0004-6361/202347582
dc.identifier.issn0004-6361
dc.identifier.otherArXiv: http://arxiv.org/abs/2309.03936v1
dc.identifier.urihttp://hdl.handle.net/2299/27321
dc.description© 2023 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe present the low-frequency radio spectra of 9 high-redshift quasars at $5.6 \leq z \leq 6.6$ using the Giant Metre Radio Telescope band-3, -4, and -5 observations ($\sim$300-1200 MHz), archival Low Frequency Array (LOFAR; 144 MHz), and Very Large Array (VLA; 1.4 and 3 GHz) data. Five of the quasars in our sample have been discovered recently, representing some of the highest redshift radio bright quasars known at low-frequencies. We model their radio spectra to study their radio emission mechanism and age of the radio jets by constraining the spectral turnover caused by synchrotron self-absorption (SSA) or free-free absorption (FFA). Besides J0309+2717, a blazar at $z=6.1$, our quasars show no sign of a spectral flattening between 144 MHz and a few GHz, indicating there is no strong SSA or FFA absorption in the observed frequency range. However, we find a wide range of spectral indices between $-1.6$ and $0.05$, including the discovery of 3 potential ultra-steep spectrum quasars. Using further archival VLBA data, we confirm that the radio SED of the blazar J0309+2717 likely turns over at a rest-frame frequency of 0.6-2.3 GHz (90-330 MHz observed frame), with a high-frequency break indicative of radiative ageing of the electron population in the radio lobes. Ultra-low frequency data below 50 MHz are necessary to constrain the absorption mechanism for J0309+2717 and the turnover frequencies for the other high-$z$ quasars in our sample. A relation between linear radio jet size and turnover frequency has been established at low redshifts. If this relation were to hold at high redshifts, the limits on the turnover frequency of our sample suggest the radio jet sizes must be more extended than the typical sizes observed in other radio-bright quasars at similar redshift. To confirm this deep radio follow-up observations with high spatial resolution are required.en
dc.format.extent16
dc.format.extent1683056
dc.language.isoeng
dc.relation.ispartofAstronomy & Astrophysics
dc.subjectastro-ph.GA
dc.titleNo strong radio absorption detected in the low-frequency spectra of radio-loud quasars at z > 5.6en
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.contributor.institutionSPECS Deans Group
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1051/0004-6361/202347582
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record