Illusions of Self‐Motion during Magnetic Resonance ‐Guided Focused Ultrasound Thalamotomy for Tremor
View/ Open
Author
Ciocca, Matteo
Jameel, Ayesha
Yousif, Nada
Patel, Neekhil
Smith, Joely
Akgun, Sena
Jones, Brynmor
Gedroyc, Wlayslaw
Nandi, Dipankar
Tai, Yen
Seemungal, Barry M.
Bain, Peter
Attention
2299/27840
Abstract
Objective: Brain networks mediating vestibular perception of self‐motion overlap with those mediating balance. A systematic mapping of vestibular perceptual pathways in the thalamus may reveal new brain modulation targets for improving balance in neurological conditions. Methods: Here, we systematically report how magnetic resonance‐guided focused ultrasound surgery of the nucleus ventralis intermedius of the thalamus commonly evokes transient patient‐reported illusions of self‐motion. In 46 consecutive patients, we linked the descriptions of self‐motion to sonication power and 3‐dimensional (3D) coordinates of sonication targets. Target coordinates were normalized using a standard atlas, and a 3D model of the nucleus ventralis intermedius and adjacent structures was created to link sonication target to the illusion. Results: A total of 63% of patients reported illusions of self‐motion, which were more likely with increased sonication power and with targets located more inferiorly along the rostrocaudal axis. Higher power and more inferiorly targeted sonications increased the likelihood of experiencing illusions of self‐motion by 4 and 2 times, respectively (odds ratios = 4.03 for power, 2.098 for location). Interpretation: The phenomenon of magnetic vestibular stimulation is the most plausible explanation for these illusions of self‐motion. Temporary unilateral modulation of vestibular pathways (via magnetic resonance‐guided focused ultrasound) unveils the central adaptation to the magnetic field‐induced peripheral vestibular bias, leading to an explicable illusion of motion. Consequently, systematic mapping of vestibular perceptual pathways via magnetic resonance‐guided focused ultrasound may reveal new intracerebral targets for improving balance in neurological conditions. ANN NEUROL 2024