Show simple item record

dc.contributor.authorChen, Mi
dc.contributor.authorSouza, Rafael S. de
dc.contributor.authorXu, Quanfeng
dc.contributor.authorShen, Shiyin
dc.contributor.authorChies-Santos, Ana L.
dc.contributor.authorYe, Renhao
dc.contributor.authorCanossa-Gosteinski, Marco A.
dc.contributor.authorCong, Yanping
dc.date.accessioned2024-05-10T14:00:03Z
dc.date.available2024-05-10T14:00:03Z
dc.date.issued2024-04-22
dc.identifier.citationChen , M , Souza , R S D , Xu , Q , Shen , S , Chies-Santos , A L , Ye , R , Canossa-Gosteinski , M A & Cong , Y 2024 , ' Galmoss: A package for GPU-accelerated galaxy profile fitting ' , Astronomy and Computing , vol. 47 , 100825 , pp. 1-11 . https://doi.org/10.1016/j.ascom.2024.100825
dc.identifier.issn2213-1337
dc.identifier.otherArXiv: http://arxiv.org/abs/2404.07780v1
dc.identifier.otherORCID: /0000-0001-7207-4584/work/159376247
dc.identifier.urihttp://hdl.handle.net/2299/27863
dc.description© 2024 The Author(s). Published by Elsevier B.V. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe introduce galmoss, a python-based, torch-powered tool for two-dimensional fitting of galaxy profiles. By seamlessly enabling GPU parallelization, galmoss meets the high computational demands of large-scale galaxy surveys, placing galaxy profile fitting in the CSST/LSST-era. It incorporates widely used profiles such as the Sérsic, Exponential disk, Ferrer, King, Gaussian, and Moffat profiles, and allows for the easy integration of more complex models. Tested on 8289 galaxies from the Sloan Digital Sky Survey (SDSS) g-band with a single NVIDIA A100 GPU, galmoss completed classical Sérsic profile fitting in about 10 min. Benchmark tests show that galmoss achieves computational speeds that are 6 × faster than those of default implementations.en
dc.format.extent11
dc.format.extent2695275
dc.language.isoeng
dc.relation.ispartofAstronomy and Computing
dc.subjectGPU computing
dc.subjectmachine and deep learning
dc.subjectExtragalactic astronomy
dc.subjectGalaxies
dc.subjectData analysis – methods
dc.subjectStatistical – GPU computing
dc.subjectGeneral – methods
dc.subjectAstronomy and Astrophysics
dc.subjectComputer Science Applications
dc.subjectSpace and Planetary Science
dc.titleGalmoss: A package for GPU-accelerated galaxy profile fittingen
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85190785726&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1016/j.ascom.2024.100825
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record