Show simple item record

dc.contributor.authorGraber, Vanessa
dc.contributor.authorRonchi, Michele
dc.contributor.authorPardo-Araujo, Celsa
dc.contributor.authorRea, Nanda
dc.date.accessioned2024-06-05T15:45:05Z
dc.date.available2024-06-05T15:45:05Z
dc.date.issued2024-06-05
dc.identifier.citationGraber , V , Ronchi , M , Pardo-Araujo , C & Rea , N 2024 , ' Isolated pulsar population synthesis with simulation-based inference ' , The Astrophysical Journal , vol. 968 , no. 1 , 16 , pp. 1-24 . https://doi.org/10.3847/1538-4357/ad3e78
dc.identifier.issn0004-637X
dc.identifier.otherArXiv: http://arxiv.org/abs/2312.14848v2
dc.identifier.otherORCID: /0000-0002-6558-1681/work/161234939
dc.identifier.otherJisc: 2019839
dc.identifier.urihttp://hdl.handle.net/2299/27945
dc.description© 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/
dc.description.abstractWe combine pulsar population synthesis with simulation-based inference (SBI) to constrain the magnetorotational properties of isolated Galactic radio pulsars. We first develop a framework to model neutron star birth properties and their dynamical and magnetorotational evolution. We specifically sample initial magnetic field strengths, B, and spin periods, P, from lognormal distributions and capture the late-time magnetic field decay with a power law. Each lognormal is described by a mean, μ log B , μ log P , and standard deviation, σ log B , σ log P , while the power law is characterized by the index, a late. We subsequently model the stars’ radio emission and observational biases to mimic detections with three radio surveys, and we produce a large database of synthetic P- P ̇ diagrams by varying our five magnetorotational input parameters. We then follow an SBI approach that focuses on neural posterior estimation and train deep neural networks to infer the parameters’ posterior distributions. After successfully validating these individual neural density estimators on simulated data, we use an ensemble of networks to infer the posterior distributions for the observed pulsar population. We obtain μ log B = 13.10 − 0.10 + 0.08 , σ log B = 0.45 − 0.05 + 0.05 and μ log P = − 1.00 − 0.21 + 0.26 , σ log P = 0.38 − 0.18 + 0.33 for the lognormal distributions and a late = − 1.80 − 0.61 + 0.65 for the power law at the 95% credible interval. We contrast our results with previous studies and highlight uncertainties of the inferred a late value. Our approach represents a crucial step toward robust statistical inference for complex population synthesis frameworks and forms the basis for future multiwavelength analyses of Galactic pulsars.en
dc.format.extent24
dc.format.extent5247036
dc.language.isoeng
dc.relation.ispartofThe Astrophysical Journal
dc.subjectastro-ph.HE
dc.subjectastro-ph.IM
dc.subjectcs.LG
dc.subjectstat.ML
dc.subjectNeutron stars
dc.subjectRadio pulsars
dc.subjectPulsars
dc.subjectAstronomy and Astrophysics
dc.subjectSpace and Planetary Science
dc.titleIsolated pulsar population synthesis with simulation-based inferenceen
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85195799480&partnerID=8YFLogxK
rioxxterms.versionofrecord10.3847/1538-4357/ad3e78
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record