Show simple item record

dc.contributor.authorLiu, Tong
dc.contributor.authorLu, Jianwei
dc.contributor.authorChen, Zhihao
dc.contributor.authorLuo, Zhihong
dc.contributor.authorRen, Yurong
dc.contributor.authorZhuge, Xiangqun
dc.contributor.authorLuo, Kun
dc.contributor.authorRen, Guogang
dc.contributor.authorLei, Weiwei
dc.contributor.authorLiu, Dan
dc.date.accessioned2024-07-15T15:15:02Z
dc.date.available2024-07-15T15:15:02Z
dc.date.issued2024-09-15
dc.identifier.citationLiu , T , Lu , J , Chen , Z , Luo , Z , Ren , Y , Zhuge , X , Luo , K , Ren , G , Lei , W & Liu , D 2024 , ' Advances, Mechanisms and Applications in Oxygen Evolution Electrocatalysis of Gold- driven ' , Chemical Engineering Journal , vol. 496 , 153719 , pp. 1-24 . https://doi.org/10.1016/j.cej.2024.153719
dc.identifier.issn1385-8947
dc.identifier.otherRIS: urn:0A7C72F66EC6978886F087DA2DCE5680
dc.identifier.otherRIS: urn:0A7C72F66EC6978886F087DA2DCE5680
dc.identifier.otherORCID: /0000-0001-8865-1526/work/163974183
dc.identifier.urihttp://hdl.handle.net/2299/28039
dc.description© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the Creative Commons Attribution-Non Commercial-No Derivatives CC BY-NC-ND licence, https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.abstractThe oxygen evolution reaction (OER) plays a crucial role in electrochemical energy storage and conversion. Among different metal elements, gold (Au) stands out due to its high electronegativity and remarkable catalytic properties, especially in nanoscale size. In this review, we aim to comprehensively analyze the oxygen electrocatalytic performance of nanosized Au, including the influence of the crystal surface, morphology, substrate materials of Au nanoparticles, size and ligands of Au nanoclusters, and Au single atoms on oxygen electrocatalysis. By exploring the catalytic performance of noble metals, non-noble metals, oxides, hydroxides/oxyhydroxides/layered double hydroxides, sulfides, phosphides, nitrides, and selenides through the integration of nanosized Au, which offers valuable insights for enhancing the OER efficiency. These effects can be attributed to two mechanisms: i) adsorbate evolution mechanism (AEM) and ii) lattice oxygen mechanism (LOM), where the nanosized Au changed the electronic structure of the catalysts and improved the adsorption of reaction intermediates to accelerate electron transfer process or exerts the synergistic effect between metallic Au and oxygen vacancies. For instance, Au-driven OER catalysts can be widely used in zinc-air batteries and water splitting in the future.en
dc.format.extent24
dc.format.extent26686612
dc.language.isoeng
dc.relation.ispartofChemical Engineering Journal
dc.subjectOxygen evolution reaction
dc.subjectElectrocatalysis
dc.subjectGold
dc.subjectAdvance
dc.subjectMechanism
dc.subjectGeneral Chemistry
dc.subjectGeneral Chemical Engineering
dc.subjectIndustrial and Manufacturing Engineering
dc.subjectEnvironmental Chemistry
dc.titleAdvances, Mechanisms and Applications in Oxygen Evolution Electrocatalysis of Gold- drivenen
dc.contributor.institutionCentre for Engineering Research
dc.contributor.institutionCentre for Future Societies Research
dc.contributor.institutionMaterials and Structures
dc.contributor.institutionBioEngineering
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.contributor.institutionDepartment of Engineering and Technology
dc.description.statusPeer reviewed
dc.identifier.urlhttp://www.scopus.com/inward/record.url?scp=85198345210&partnerID=8YFLogxK
rioxxterms.versionofrecord10.1016/j.cej.2024.153719
rioxxterms.typeOther
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record