dc.contributor.author | Kouroupa, Athanasia | |
dc.date.accessioned | 2024-07-29T11:39:02Z | |
dc.date.available | 2024-07-29T11:39:02Z | |
dc.date.issued | 2024-06-06 | |
dc.identifier.uri | http://hdl.handle.net/2299/28076 | |
dc.description.abstract | The use of socially assistive robots (SARs) appears to facilitate learning, social and communication, and collaborative play in autistic children, though rigorous research to drive translation into everyday practice is limited. This thesis, comprised of four studies, was aimed at providing a comprehesive overview of how SARs have been used with young autistic people, to identify the factors that might encourage their future use, and to consider the scope of SAR benefit for autistic youth via secondary data analysis from a specific SAR support programme. The first chapters provide an overview of autism, theories, and models, and the available psychosocial support for autistic children and their families as per current practice. Within this, the different SARs types used in autism research are described followed by an outiline of the rationale for each study design methodology to address the aims of this thesis. Chapter 4 presents an up-to-date evidence summary of the nature of SARs research in autism reporting that robot-mediated support has predominantly been administered in autism clinics/centers with benefits in the social and communication skills of autistic children. Chapter 5 explores parents’/carers’ knowledge and preferences about the use of smartphones, iPods, tablets, virtual reality, robots or other technologies to support the specific needs/interests of autistic children offering guidance on how to extend the benefits of the systematic review findings. The online survey reported that 59% of parents/carers mostly preferred a tablet, followed by virtual reality and then robots that were the least preferred technologies due to being immersive, unrealistic or an unknown technology. To delve deeper into parent views about SARs, chapter 6 provides data from 12 individual interviews and one focus group with parents of autistic children. Parents were receptive to the use of a robot-mediated support acknowledging that the predictability, consistency and scaffolding of robots might facilitate learning in autism. Independent living skills and social and communication skills were the two domains of focus in future robot-mediated support with autistic children. Such a finding indicates that there may be scope to extent robots in the autism community. The final data analysed in chapter 7 draws on ten video recordings of autistic children exploring the effect of triadic robot-mediated support with a human therapist alongside a humanoid robot, called Kaspar, compared
to a dyadic interaction with a human therapist alone on the development of children’s joint attention skills. Retrospective data analysis here showed no statistically significant difference in the joint attention skills of autistic children in the human therapist compared to the robot-mediated group nor in their skills from the first to the last session in either group. A statistically significant difference was observed on the requests for social games which improved from the first to the last session in the human therapist group. This study highlights the challenges SARs research facing to evidence demonstrable impact on everyday life skills as a driver of parent and child buy-in to this type of support. Taken together, the studies in this thesis suggest that SARs have a role in autism support, mainly in social and communication domains. Parents/carers have valid reasons for preferring other types of technology support though when asked to think about SARs, they do acknowledge ways in which robots may be advantegous. Existing data and secondary analysis reported that rigour in reporting the way that SARs may benefit skills development is needed and that life skills impact may be difficult to assess over a short-term period. To take SARs research forward, it is imperative to deepen partenships with autism stakeholders to ensure fit for purpose skills selection, measurement of impact, and take up of support to expand benefit. | en_US |
dc.language.iso | en | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject | autism | en_US |
dc.subject | children | en_US |
dc.subject | parents | en_US |
dc.subject | support | en_US |
dc.subject | therapy | en_US |
dc.subject | robots | en_US |
dc.subject | technology | en_US |
dc.title | The Use of Socially Assistive Robots with Autistic Children | en_US |
dc.type | info:eu-repo/semantics/doctoralThesis | en_US |
dc.identifier.doi | doi:10.18745/th.28076 | en_US |
dc.identifier.doi | 10.18745/th.28076 | |
dc.type.qualificationlevel | Doctoral | en_US |
dc.type.qualificationname | PhD | en_US |
dcterms.dateAccepted | 2024-06-06 | |
rioxxterms.funder | Default funder | en_US |
rioxxterms.identifier.project | Default project | en_US |
rioxxterms.version | NA | en_US |
rioxxterms.licenseref.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
rioxxterms.licenseref.startdate | 2024-07-29 | |
herts.preservation.rarelyaccessed | true | |
rioxxterms.funder.project | ba3b3abd-b137-4d1d-949a-23012ce7d7b9 | en_US |