The Radio Galaxy Environment Reference Survey (RAGERS) : a submillimetre study of the environments of massive radio-quiet galaxies at z = 1–3
View/ Open
Author
Cornish, Thomas M.
Wardlow, Julie L.
Greve, Thomas
Chapman, Scott
Chen, Chian-Chou
Dannerbauer, Helmut
Goto, Tomotsu
Gullberg, Bitten
Ho, Luis C.
Jiang, Xue-Jian
Lagos, Claudia
Lee, Minju
Serjeant, Stephen
Shim, Hyunjin
Smith, Daniel J. B.
Vijayan, Aswin
Wagg, Jeff
Zhou, Dazhi
Attention
2299/28130
Abstract
Measuring the environments of massive galaxies at high redshift is crucial to understanding galaxy evolution and the conditions that gave rise to the distribution of matter we see in the Universe today. While high-z radio galaxies (HzRGs) and quasars tend to reside in protocluster-like systems, the environments of their radio-quiet counterparts are relatively unexplored, particularly in the submillimetre, which traces dust-obscured star formation. In this study, we search for 850 μm-selected submillimetre galaxies (SMGs) in the environments of massive (), radio-quiet (WHz) galaxies at using data from the SCUBA-2 COSMOS (S2COSMOS) survey. By constructing number counts in circular regions of radius 1-6 arcmin and comparing with blank-field measurements, we find no significant overdensities of SMGs around massive radio-quiet galaxies at any of these scales, despite being sensitive down to overdensities of. To probe deeper than the catalogue we also examine the distribution of peaks in the SCUBA-2 signal-to-noise (SNR) map, which reveals only tentative signs of any difference in the SMG densities of the radio-quiet galaxy environments compared to the blank field, and only on smaller scales (1 arcmin radii, corresponding to Mpc) and higher SNR thresholds. We conclude that massive, radio-quiet galaxies at cosmic noon are typically in environments with, which are either consistent with the blank field or contain only weak overdensities spanning sub-Mpc scales. The contrast between our results and studies of HzRGs with similar stellar masses and redshifts implies an intrinsic link between the wide-field environment and the radio luminosity of the active galactic nucleus at high redshift.
Publication date
2024-09-01Published in
Monthly Notices of the Royal Astronomical SocietyPublished version
https://doi.org/10.1093/mnras/stae1861Other links
http://hdl.handle.net/2299/28130Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...