JADES + JEMS: A Detailed Look at the Buildup of Central Stellar Cores and Suppression of Star Formation in Galaxies at Redshifts 3 < z < 4.5
View/ Open
Author
Ji, Zhiyuan
Williams, Christina C.
Tacchella, Sandro
Suess, Katherine A.
Baker, William M.
Alberts, Stacey
Bunker, Andrew J.
Johnson, Benjamin D.
Robertson, Brant
Sun, Fengwu
Eisenstein, Daniel J.
Rieke, Marcia
Maseda, Michael V.
Hainline, Kevin
Hausen, Ryan
Rieke, George
Willmer, Christopher N. A.
Egami, Eiichi
Shivaei, Irene
Carniani, Stefano
Charlot, Stephane
Chevallard, Jacopo
Curtis-Lake, Emma
Looser, Tobias J.
Maiolino, Roberto
Willott, Chris
Chen, Zuyi
Helton, Jakob M.
Lyu, Jianwei
Nelson, Erica
Bhatawdekar, Rachana
Boyett, Kristan
Sandles, Lester
Attention
2299/28338
Abstract
We present a spatially resolved study of stellar populations in six galaxies with stellar masses M * ∼ 1010 M ☉ at z ∼ 3.7 using 14-filter James Webb Space Telescope (JWST)/NIRCam imaging from the JADES and JEMS surveys. The six galaxies are visually selected to have clumpy substructures with distinct colors over rest frame 3600−4100 Å, including a red, dominant stellar core that is close to their stellar-light centroids. With 23-filter photometry from the Hubble Space Telescope to JWST, we measure the stellar-population properties of individual structural components via spectral energy distribution fitting using Prospector. We find that the central stellar cores are ≳2 times more massive than the Toomre mass, indicating they may not form via single in situ fragmentation. The stellar cores have stellar ages of 0.4−0.7 Gyr that are similar to the timescale of clump inward migration due to dynamical friction, suggesting that they likely instead formed through the coalescence of giant stellar clumps. While they have not yet quenched, the six galaxies are below the star-forming main sequence by 0.2−0.7 dex. Within each galaxy, we find that the specific star formation rate is lower in the central stellar core, and the stellar-mass surface density of the core is already similar to quenched galaxies of the same masses and redshifts. Meanwhile, the stellar ages of the cores are either comparable to or younger than the extended, smooth parts of the galaxies. Our findings are consistent with model predictions of the gas-rich compaction scenario for the buildup of galaxies’ central regions at high redshifts. We are likely witnessing the coeval formation of dense central cores, along with the onset of galaxy-wide quenching at z > 3.
Publication date
2024-10-09Published in
The Astrophysical JournalPublished version
https://doi.org/10.3847/1538-4357/ad6e7fOther links
http://hdl.handle.net/2299/28338Metadata
Show full item recordRelated items
Showing items related by title, author, creator and subject.
-
The H alpha galaxy survey. I. The galaxy sample, H alpha narrow-band observations and star formation parameters for 334 galaxies
James, P.A.; Shane, N.S.; Beckman, J.E.; Cardwell, A.; Collins, C.A.; Etherton, J.; de Jong, R.S.; Fathi, K.; Knapen, J.; Peletier, R.F.; Percival, S.M.; Pollacco, D.L.; Seigar, M.S.; Stedman, S. (2004)We discuss the selection and observations of a large sample of nearby galaxies, which we are using to quantify the star formation activity in the local Universe. The sample consists of 334 galaxies across all Hubble types ... -
On the Key Processes that Drive Galaxy Evolution: the Role of Galaxy Mergers, Accretion, Local Environment and Feedback in Shaping the Present-Day Universe
Martin, Garreth (2019-07-17)The study of galaxy evolution is a fundamental discipline in modern astrophysics, dealing with how and why galaxies of all types evolve over time. The diversity of present-day galaxies is a reflection of the processes ... -
The Physical Processes that Drive Galaxy Evolution - from Massive Galaxies to the Dwarf Regime
Jackson, Ryan (2021-09-25)The study of galaxy formation and evolution is a cornerstone in astrophysics, as galaxies connect together all scales of the Universe. The physical processes that govern galaxies therefore needs to be fully understood if ...