Show simple item record

dc.contributor.authorKillestein, T L
dc.contributor.authorKelsey, L
dc.contributor.authorWickens, E
dc.contributor.authorNuttall, L
dc.contributor.authorLyman, J
dc.contributor.authorKrawczyk, C
dc.contributor.authorAckley, K
dc.contributor.authorDyer, M J
dc.contributor.authorJiménez-Ibarra, F
dc.contributor.authorUlaczyk, K
dc.contributor.authorO’Neill, D
dc.contributor.authorKumar, A
dc.contributor.authorSteeghs, D
dc.contributor.authorGalloway, D K
dc.contributor.authorDhillon, V S
dc.contributor.authorO’Brien, P
dc.contributor.authorRamsay, G
dc.contributor.authorNoysena, K
dc.contributor.authorKotak, R
dc.contributor.authorBreton, R P
dc.contributor.authorPallé, E
dc.contributor.authorPollacco, D
dc.contributor.authorAwiphan, S
dc.contributor.authorBelkin, S
dc.contributor.authorChote, P
dc.contributor.authorClark, P
dc.contributor.authorCoppejans, D
dc.contributor.authorDuffy, C
dc.contributor.authorEyles-Ferris, R
dc.contributor.authorGodson, B
dc.contributor.authorGompertz, B
dc.contributor.authorGraur, O
dc.contributor.authorIrawati, P
dc.contributor.authorJarvis, D
dc.contributor.authorJulakanti, Y
dc.contributor.authorKennedy, M R
dc.contributor.authorKuncarayakti, H
dc.contributor.authorLevan, A
dc.contributor.authorLittlefair, S
dc.contributor.authorMagee, M
dc.contributor.authorMandhai, S
dc.contributor.authorMata Sánchez, D
dc.contributor.authorMattila, S
dc.contributor.authorMcCormac, J
dc.contributor.authorMullaney, J
dc.contributor.authorMunday, J
dc.contributor.authorPatel, M
dc.contributor.authorPursiainen, M
dc.contributor.authorRana, J
dc.contributor.authorSawangwit, U
dc.contributor.authorStanway, E
dc.contributor.authorStarling, R
dc.contributor.authorWarwick, B
dc.contributor.authorWiersema, K
dc.date.accessioned2024-11-05T12:45:00Z
dc.date.available2024-11-05T12:45:00Z
dc.date.issued2024-09-30
dc.identifier.citationKillestein , T L , Kelsey , L , Wickens , E , Nuttall , L , Lyman , J , Krawczyk , C , Ackley , K , Dyer , M J , Jiménez-Ibarra , F , Ulaczyk , K , O’Neill , D , Kumar , A , Steeghs , D , Galloway , D K , Dhillon , V S , O’Brien , P , Ramsay , G , Noysena , K , Kotak , R , Breton , R P , Pallé , E , Pollacco , D , Awiphan , S , Belkin , S , Chote , P , Clark , P , Coppejans , D , Duffy , C , Eyles-Ferris , R , Godson , B , Gompertz , B , Graur , O , Irawati , P , Jarvis , D , Julakanti , Y , Kennedy , M R , Kuncarayakti , H , Levan , A , Littlefair , S , Magee , M , Mandhai , S , Mata Sánchez , D , Mattila , S , McCormac , J , Mullaney , J , Munday , J , Patel , M , Pursiainen , M , Rana , J , Sawangwit , U , Stanway , E , Starling , R , Warwick , B & Wiersema , K 2024 , ' Kilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysics ' , Monthly Notices of the Royal Astronomical Society , vol. 533 , no. 2 , stae1817 , pp. 2113-2132 . https://doi.org/10.1093/mnras/stae1817
dc.identifier.issn0035-8711
dc.identifier.otherRIS: urn:2E9BF9EE9DC22375BE1FF9C7B7967915
dc.identifier.otherORCID: /0000-0002-9133-7957/work/171307159
dc.identifier.urihttp://hdl.handle.net/2299/28414
dc.description© 2024 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/
dc.description.abstractTime-domain astrophysics continues to grow rapidly, with the inception of new surveys drastically increasing data volumes. Democratized, distributed approaches to training sets for machine learning classifiers are crucial to make the most of this torrent of discovery – with citizen science approaches proving effective at meeting these requirements. In this paper, we describe the creation of and the initial results from the Kilonova Seekers citizen science project, built to find transient phenomena from the GOTO telescopes in near real-time. Kilonova Seekers launched in 2023 July and received over 600 000 classifications from approximately 2000 volunteers over the course of the LIGO-Virgo-KAGRA O4a observing run. During this time, the project has yielded 20 discoveries, generated a ‘gold-standard’ training set of 17 682 detections for augmenting deep-learned classifiers, and measured the performance and biases of Zooniverse volunteers on real-bogus classification. This project will continue throughout the lifetime of GOTO, pushing candidates at ever-greater cadence, and directly facilitate the next-generation classification algorithms currently in development.en
dc.format.extent20
dc.format.extent4167588
dc.language.isoeng
dc.relation.ispartofMonthly Notices of the Royal Astronomical Society
dc.titleKilonova Seekers: the GOTO project for real-time citizen science in time-domain astrophysicsen
dc.contributor.institutionDepartment of Physics, Astronomy and Mathematics
dc.contributor.institutionCentre for Astrophysics Research (CAR)
dc.contributor.institutionSchool of Physics, Engineering & Computer Science
dc.description.statusPeer reviewed
rioxxterms.versionofrecord10.1093/mnras/stae1817
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record