dc.contributor.author | Ngouani Siewe, Micky Mike | |
dc.contributor.author | CHEN, Yong Kang | |
dc.contributor.author | Day, Rodney | |
dc.contributor.author | David-West, Opus | |
dc.date.accessioned | 2025-01-24T16:45:01Z | |
dc.date.available | 2025-01-24T16:45:01Z | |
dc.date.issued | 2025-02-15 | |
dc.identifier.citation | Ngouani Siewe , M M , CHEN , Y K , Day , R & David-West , O 2025 , ' CFD and experimental investigations of a novel vertical axis Omni-flow wind turbine shroud system operating at low Reynolds numbers, typical urban flow conditions ' , Energy Conversion and Management , vol. 326 , 119514 , pp. 1-19 . https://doi.org/10.1016/j.enconman.2025.119514 | |
dc.identifier.issn | 0196-8904 | |
dc.identifier.uri | http://hdl.handle.net/2299/28740 | |
dc.description | © 2025 Published by Elsevier Ltd. All rights are reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.enconman.2025.119514 | |
dc.description.abstract | This study examined the aerodynamic performance and flow characteristics of an innovative shrouded omnidirectional wind turbine system at low Reynold numbers to tackle the SDG 7 of the UN. Four turbulence models, notably the Shear Stress Transport (SST Menter) k − ω, the Reynolds Stress Transport (RST), the Improved Delay Detached Eddies Simulation (IDDES) SST k − ω, and the Large Eddy Simulation (LES WALE), were tested to find the best model(s) for this new omni-flow wind turbine. Compared with experimental results, the LES WALE and the IDDES SST k − ω models best predicted turbulent and uniform flow regions inside and outside the shroud, including CFD parameters, with one being more accurate on specific parameters such as Cd and another on other parameters. The IDDES SST k − ω excelled in predicting velocity ratios, lift coefficient (Cl) and provided the best balance of accuracy and computational efficiency of this innovative omni-direction wind turbine shroud. The novel shroud design, with its unique ability to self-start and harness omnidirectional wind at any free stream velocity for electricity generation, was a key focus of this study. The airflow inside and around the innovative shroud system was meticulously characterised for potential optimisation. Findings demonstrated that the shroud effectively redirected airflow as low as 1.5 m/s into the turbine housing and with 1.5 maximum speed ratio the airflow flew towards the outlet and generated power, leading to superior self-starting capabilities. The power output increased non-linearly with the rotational speed, achieving optimal efficiency beyond 1000 rpm. It is evident that this new system has the potential for enhanced energy capture under varying wind conditions in urban areas. | en |
dc.format.extent | 19 | |
dc.format.extent | 2357836 | |
dc.language.iso | eng | |
dc.relation.ispartof | Energy Conversion and Management | |
dc.subject | Omni-Flow shrouded vertical axis wind turbine | |
dc.subject | Low noise self-starting system | |
dc.subject | CFD turbulence models | |
dc.subject | Energy harvesting in urban areas | |
dc.subject | UN sustainable development goals | |
dc.title | CFD and experimental investigations of a novel vertical axis Omni-flow wind turbine shroud system operating at low Reynolds numbers, typical urban flow conditions | en |
dc.contributor.institution | Centre for Engineering Research | |
dc.contributor.institution | Centre for Climate Change Research (C3R) | |
dc.contributor.institution | Centre for Future Societies Research | |
dc.contributor.institution | Energy and Sustainable Design Research Group | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Engineering and Technology | |
dc.description.status | Peer reviewed | |
dc.date.embargoedUntil | 2027-01-23 | |
rioxxterms.versionofrecord | 10.1016/j.enconman.2025.119514 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |