dc.contributor.author | Bunk, Severin | |
dc.contributor.author | Schenkel, Alexander | |
dc.contributor.author | MacManus, James | |
dc.date.accessioned | 2025-02-07T12:45:02Z | |
dc.date.available | 2025-02-07T12:45:02Z | |
dc.date.issued | 2025-02-03 | |
dc.identifier.citation | Bunk , S , Schenkel , A & MacManus , J 2025 , ' Lorentzian bordisms in algebraic quantum field theory ' , Letters in Mathematical Physics , vol. 115 , no. 1 , 16 , pp. 1-43 . https://doi.org/10.1007/s11005-025-01906-3 | |
dc.identifier.issn | 0377-9017 | |
dc.identifier.other | Jisc: 2654093 | |
dc.identifier.uri | http://hdl.handle.net/2299/28792 | |
dc.description | © 2025 The Author(s). This is an open access article distributed under the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/ | |
dc.description.abstract | It is shown that every algebraic quantum field theory has an underlying functorial field theory which is defined on a suitable globally hyperbolic Lorentzian bordism pseudo-category. This means that globally hyperbolic Lorentzian bordisms between Cauchy surfaces arise naturally in the context of algebraic quantum field theory. The underlying functorial field theory encodes the time evolution of the original theory, but not its spatially local structure. As an illustrative application of these results, the algebraic and functorial descriptions of a free scalar quantum field are compared in detail. | en |
dc.format.extent | 43 | |
dc.format.extent | 642259 | |
dc.language.iso | eng | |
dc.relation.ispartof | Letters in Mathematical Physics | |
dc.subject | 18N10 | |
dc.subject | 53C50 | |
dc.subject | 81Txx | |
dc.subject | Algebraic quantum field theory | |
dc.subject | Bordisms | |
dc.subject | Functorial field theory | |
dc.subject | Lorentzian geometry | |
dc.subject | Pseudo-categories | |
dc.title | Lorentzian bordisms in algebraic quantum field theory | en |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.contributor.institution | Department of Physics, Astronomy and Mathematics | |
dc.description.status | Peer reviewed | |
rioxxterms.versionofrecord | 10.1007/s11005-025-01906-3 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |