dc.contributor.author | Tsomokos, D.I. | |
dc.contributor.author | Ashhab, S. | |
dc.contributor.author | Nori, F. | |
dc.date.accessioned | 2009-02-20T14:05:14Z | |
dc.date.available | 2009-02-20T14:05:14Z | |
dc.date.issued | 2008 | |
dc.identifier.citation | New Journal of Physics 10 article no. 113020 | en |
dc.identifier.issn | 1367-2630 (Online) | |
dc.identifier.other | 903224 | |
dc.identifier.uri | http://hdl.handle.net/2299/2941 | |
dc.identifier.uri | http://dx.doi.org/10.1088/1367-2630/10/11/113020 | en |
dc.description | Original article can be found at: http://www.iop.org/EJ/journal/1367-2630/1 DOI: 10.1088/1367-2630/10/11/113020 | en |
dc.description.abstract | A fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin–Meshkov–Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger–Horne–Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington–Kirkpatrick (SK) spin glasses, with superconducting qubit networks. | en |
dc.format.extent | 716288 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | en |
dc.publisher | IOP Publishing | en |
dc.subject | entanglement | en |
dc.title | Fully connected network of superconducting qubits in a cavity. | en |
dc.type | Article | en |
herts.preservation.rarelyaccessed | true | |