Show simple item record

dc.contributor.authorTsomokos, D.I.
dc.contributor.authorAshhab, S.
dc.contributor.authorNori, F.
dc.date.accessioned2009-02-20T14:05:14Z
dc.date.available2009-02-20T14:05:14Z
dc.date.issued2008
dc.identifier.citationNew Journal of Physics 10 article no. 113020en
dc.identifier.issn1367-2630 (Online)
dc.identifier.other903224
dc.identifier.urihttp://hdl.handle.net/2299/2941
dc.identifier.urihttp://dx.doi.org/10.1088/1367-2630/10/11/113020en
dc.descriptionOriginal article can be found at: http://www.iop.org/EJ/journal/1367-2630/1 DOI: 10.1088/1367-2630/10/11/113020en
dc.description.abstractA fully connected qubit network is considered, where every qubit interacts with every other one. When the interactions between the qubits are homogeneous, the system is a special case of the finite Lipkin–Meshkov–Glick (LMG) model. We propose a natural implementation of this model using superconducting qubits in state-of-the-art circuit QED. The ground state, the low-lying energy spectrum and the dynamical evolution are investigated. We find that, under realistic conditions, highly entangled states of Greenberger–Horne–Zeilinger (GHZ) and W types can be generated. We also comment on the influence of disorder on the system and discuss the possibility of simulating complex quantum systems, such as Sherrington–Kirkpatrick (SK) spin glasses, with superconducting qubit networks.en
dc.format.extent716288 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.publisherIOP Publishingen
dc.subjectentanglementen
dc.titleFully connected network of superconducting qubits in a cavity.en
dc.typeArticleen
herts.preservation.rarelyaccessedtrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record