University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        The effect of unsaturated fatty acids in benzyl alcohol on the percutaneous permeation of three model penetrants

        Author
        Nanayakkara, G.R.
        Bartlett, A.
        Forbes, B
        Marriott, C.
        Whitfield, P.J.
        Brown, Marc
        Attention
        2299/3007
        Abstract
        The model penetrants butyl paraben (BP), methyl paraben (MP) and caffeine (CF), because of their different octanol/water partition coefficients and postulated routes of permeation through human skin, were selected to assess the enhancing activity of pre-treatment solutions consisting of monounsaturated (oleic (OA) and palmitoleic (PA)) and poly-unsaturated (linoleic (LA)) fatty acids in benzyl alcohol (BA) using Franz diffusion cells and HPLC detection. Prior to assessing the effect of penetrant lipophilicity, NIP was chosen to investigate the concentration-dependent effect of fatty acids in pre-treatment solutions. At 5% (w/w) fatty acids in BA, only pre-treatment solutions containing palmitoleic acid (PA) increased the permeation of MP when compared to pre-treatment with BA alone, whereas at higher concentrations (10 and 20%, w/w), all pre-treatment solutions except 10% OA produced a significant increase in MP flux (P < 0.05). The general order of fatty acid effectiveness at any concentration was PA > LA > OA. At 20% (w/w) fatty acids in BA, all pre-treatment solutions significantly enhanced the permeation of all three penetrants (P<0.05) and an inverse relationship between penetrant lipophilicity and enhancement effect was observed. The permeation of BP was enhanced to a similar extent by all three fatty acids, whereas PA caused a significantly greater enhancement in the flux of both MP and CF when compared to CIA, LA and controls (P<0.05). It was proposed that the synergetic enhancement mechanisms of fatty acids and BA in pre-treatment solutions were augmenting the polar route by way of interactions with both polar and non-polar regions of stratum corneum lipids. Furthermore, the combination of PA and BA appears to be a good candidate as a penetration enhancer for hydrophilic molecules. (C) 2005 Elsevier B.V. All rights reserved.
        Publication date
        2005-09-14
        Published in
        International Journal of Pharmaceutics
        Published version
        https://doi.org/10.1016/j.ijpharm.2005.05.024
        Other links
        http://hdl.handle.net/2299/3007
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan