University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Glacier surge propagation by thermal evolution at the bed

        Author
        Murray, T.
        Stuart, G.W.
        Miller, P.J.
        Woodward, J.
        Smith, A.M.
        Porter, P.R.
        Jiskoot, H.
        Attention
        2299/3384
        Abstract
        Bakaninbreen, southern Svalbard, began a prolonged surge during 1985. In 1986, an internal reflecting horizon on radio echo sounding data was interpreted to show that the position of the surge front coincided with a transition between areas of warm (unfrozen) and cold (frozen) bed. Ground-penetrating radar lines run in 1996 and 1998 during early quiescence show that the basal region of the glacier is characterized by a strong reflection, interpreted as the top of a thick layer of sediment-rich basal ice. Down glacier of the present surge front, features imaged beneath the basal reflection are interpreted as the bottom of the basal ice layer, the base of a permafrost layer, and local ice lenses. This indicates that this region of the bed is cold. Up glacier of the surge front, a scattering zone above the basal reflection is interpreted as warm ice. There is no evidence for this warm zone down glacier of the surge front, nor do we see basal permafrost up glacier of it. Thus, as in early surge phase, the location of the surge front is now at the transition between warm and cold ice at the glacier bed. We suggest that the propagation of the front is associated with this basal thermal transition throughout the surge. Because propagation of the front occurs rapidly and generates only limited heat, basal motion during fast flow must have been restricted to a thin layer at the bed and occurred by sliding or deformation localized at the ice-bed interface.
        Publication date
        2000
        Published in
        Journal of Geophysical Research
        Published version
        https://doi.org/10.1029/2000JB900066
        Other links
        http://hdl.handle.net/2299/3384
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan