Show simple item record

dc.contributor.authorHill, K.
dc.contributor.authorBenham, C.D.
dc.contributor.authorMcNulty, S.
dc.contributor.authorRandall, A.D.
dc.date.accessioned2009-06-03T12:49:53Z
dc.date.available2009-06-03T12:49:53Z
dc.date.issued2004
dc.identifier.citationHill , K , Benham , C D , McNulty , S & Randall , A D 2004 , ' Flufenamic acid is a pH-dependent antagonist of TRPM2 channels ' , Neuropharmacology , vol. 47 , no. 3 , pp. 450-460 . https://doi.org/10.1016/j.neuropharm.2004.04.014
dc.identifier.issn0028-3908
dc.identifier.otherPURE: 127921
dc.identifier.otherPURE UUID: f8d010ea-e516-4772-a26b-f646a667afca
dc.identifier.otherdspace: 2299/3480
dc.identifier.otherScopus: 3242736642
dc.identifier.urihttp://hdl.handle.net/2299/3480
dc.descriptionOriginal article can be found at: http://www.sciencedirect.com/science/journal/00283908 Copyright Elsevier Ltd. DOI: 10.1016/j.neuropharm.2004.04.014 [Full text of this article is not available in the UHRA]
dc.description.abstractLike a number of other TRP channels, TRPM2 is a Ca2+-permeable non-selective cation channel, the activity of which is regulated by intracellular and extracellular Ca2+. A unique feature of TRPM2 is its activation by ADP-ribose and chemical species that arise during oxidative stress, for example, NAD+ and H2O2. These properties have lead to proposals that this channel may play a role in the cell death produced by pathological redox states. The lack of known antagonists of this channel have made these hypotheses difficult to test. Here, we demonstrate, using patch clamp electrophysiology, that the non-steroidal anti-inflammatory compound flufenamic acid (FFA) inhibits recombinant human TRPM2 (hTRPM2) as well as currents activated by intracellular ADP-ribose in the CRI-G1 rat insulinoma cell line. All concentrations tested in a range from 50 to 1000 μM produced complete inhibition of the TRPM2-mediated current. Following FFA removal, a small (typically 10–15%) component of current was rapidly recovered (time constant ~3 s), considerably longer periods in the absence of FFA produced no further current recovery. Reapplication of FFA re-antagonised the recovered current and subsequent FFA washout produced recovery of only a small percentage of the reblocked current. Decreasing extracellular pH accelerated FFA inhibition of TRPM2. Additional experiments indicated hTRPM2 activation was required for FFA antagonism to occur and that the generation of irreversible antagonism was preceded by a reversible component of block. FFA inhibition could not be induced by intracellular application of FFA. ADP-ribose activated currents in the rat insulinoma cell line CRI-G1 were also antagonised by FFA with concentration- and pH-dependent kinetics. In contrast to the observations made with hTRPM2, antagonism of ADP-ribose activated currents in CRI-G1 cells could be fully reversed following FFA removal. These experiments suggest that FFA may be a useful tool antagonist for studies of TRPM2 function.en
dc.language.isoeng
dc.relation.ispartofNeuropharmacology
dc.titleFlufenamic acid is a pH-dependent antagonist of TRPM2 channelsen
dc.contributor.institutionDepartment of Human and Environmental Sciences
dc.description.statusPeer reviewed
dcterms.dateAccepted2004
rioxxterms.versionofrecordhttps://doi.org/10.1016/j.neuropharm.2004.04.014
rioxxterms.typeJournal Article/Review
herts.preservation.rarelyaccessedtrue


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record