University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Wavelet neural network approach for fault diagnosis of analogue circuits

        Author
        Sun, Y.
        He, Y.
        Tan, Y.
        Attention
        2299/3576
        Abstract
        A systematic method for fault diagnosis of analogue circuits based on the combination of neural networks and wavelet transforms is presented. Using wavelet decomposition as a tool for removing noise from the sampled signals, optimal feature information is extracted by wavelet noise removal, multi-resolution decomposition, PCA (principal component analysis) and data normalisation. The features are applied to the proposed wavelet neural network and the fault patterns are classified. Diagnosis principles and procedures are described. The reliability of the method and comparison with other methods are shown by two active filter examples.
        Publication date
        2004
        Published in
        IEE Proceedings Circuits Devices and Systems
        Other links
        http://hdl.handle.net/2299/3576
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan