University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster

        View/Open
        903150.pdf (PDF, 1Mb)
        Author
        Weights, D.
        Lucas, P.W.
        Roche, P.F.
        Pinfield, D.J.
        Riddick, F.
        Attention
        2299/3632
        Abstract
        We present near-infrared long-slit and multislit spectra of low-mass brown dwarf candidates in the Orion nebula cluster. The long-slit data were observed in the H and K bands using NIRI on the Gemini-North Telescope. The multi-object spectroscopic observations were made using IRIS2 on the Anglo-Australian Telescope at H band. We develop a spectral typing scheme based on optically calibrated, near-infrared spectra of young sources in the Taurus and IC 348 star-forming regions with spectral types M3.0 to M9.5. We apply our spectral typing scheme to 52 sources, including previously published UKIRT and GNIRS spectra. 40 objects show strong water absorption with spectral types of M3 to >M9.5. The latest type objects are provisionally classified as early L types. We plot our sources on Hertzsprung–Russell diagrams overlaid with theoretical pre-main-sequence isochrones. The majority of our objects lie close to or above the 1-Myr isochrone, leading to an average cluster age that is <1 Myr. We find 38 sources lie at or below the hydrogen-burning limit (0.075 M⊙). 10 sources potentially have masses below the deuterium-burning limit (0.012 M⊙). We use a Monte Carlo approach to model the observed luminosity function with a variety of cluster age and mass distributions. The lowest χ2 values are produced by an age distribution centred at 1 Myr, with a mass function that declines at substellar masses according to an Mα power law in the range α= 0.3–0.6. We find that truncating the mass function at 0.012 M⊙ produces luminosity functions that are starved of the faintest magnitudes, even when using bimodal age populations that contain 10-Myr-old sources. The results of these Monte Carlo simulations therefore support the existence of a planetary mass population in the ONC
        Publication date
        2009
        Published in
        Monthly Notices of the Royal Astronomical Society
        Published version
        https://doi.org/10.1111/j.1365-2966.2008.14096.x
        Other links
        http://hdl.handle.net/2299/3632
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan