University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Transdermal drug delivery devices: Skin perturbation systems

        View/Open
        Microsoft Word - Transdermal and abrasion final draft.pdf (PDF, 239Kb)
        Author
        Brown, M.B.
        Traynor, M.J.
        Martin, G.P.
        Akomeah, F.K.
        Attention
        2299/3645
        Abstract
        Human skin serves a protective function by imposing physicochemical limitations to the type of permeant that can traverse the barrier. For a drug to be delivered passively via the skin it needs to have a suitable lipophilicity and a molecular weight <500 Da. The number of commercially available products based on transdermal or dermal delivery has been limited by these requirements. In recent years various passive and active strategies have emerged to optimize delivery. The passive approach entails the optimization of formulation or drug carrying vehicle to increase skin permeability. However passive methods do not greatly improve the permeation of drugs with molecular weights >500 Da. In contrast active methods, normally involving physical or mechanical methods of enhancing delivery have been shown to be generally superior. The delivery of drugs of differing lipophilicity and molecular weight including proteins, peptides, and oligonucletides has been shown to be improved by active methods such as iontophoresis, electroporation, mechanical perturbation, and other energy-related techniques such as ultrasound and needless injection. This chapter details one practical example of an active skin abrasion device to demonstrate the success of such active methods. The enhanced in vitro permeation of acyclovir through human epidermal membrane using a rotating brush abrasion device was compared to acyclovir delivery using iontophoresis. It was found that application of brush treatment for 10 seconds at a pressure of 300Nm-2 was comparable to 10 minutes of iontophoresis. The observed enhancement of permeability observed using the rotating brush was as a result of disruption of the cells of the stratum corneum causing a reduction of the barrier function of the skin. However, for these novel delivery methods to succeed and compete with those already on the market, the prime issues that require consideration include device design and safety, efficacy, ease of handling, and cost-effectiveness. This chapter provides a detailed review of the next generation of active delivery technologies.
        Publication date
        2008
        Other links
        http://hdl.handle.net/2299/3645
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan