University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Distinguishing Metabolic Heat from Condensation Heat during Muscle Recovery

        View/Open
        1998 Lou Curtin Woledge JEB.pdf (PDF, 58Kb)
        Author
        Lou, Fang
        Curtin, N.A.
        Woledge, R.C.
        Attention
        2299/3661
        Abstract
        When a thermopile is used to measure the heat production of isolated muscle, the muscle is surrounded by gas saturated with water vapour, initially in equilibrium with the muscle. After contraction, the osmolarity of the muscle is raised so that it is no longer in equilibrium with the gas around it, and condensation will occur. When artificial muscles of known osmolarity were placed on a thermopile surrounded by gas in equilibrium with a solution of lower osmolarity, their temperature was found to be raised (by 102.7mKosmol-1 l). This temperature increase was greatly reduced by covering the artificial muscle with a Teflon film. Experiments on living muscle from the dogfish Scyliorhinus canicula showed that muscle temperature was higher 2 min after a series of 20 twitches at 3 Hz if the muscle was not covered by Teflon than if it was covered. The Teflon covering did not diminish the muscle’s contractile performance. We conclude that the condensation of water does contribute to the heat measured during the recovery period, but that when the muscle is covered by Teflon film condensation heat can largely be prevented so that only genuine metabolic recovery heat is produced.
        Publication date
        1998
        Published in
        Journal of Experimental Biology
        Other links
        http://hdl.handle.net/2299/3661
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan