Show simple item record

dc.contributor.authorSun, Yi.
dc.contributor.authorTino, P.
dc.contributor.authorNabney, I.
dc.contributor.editorWinkler, J.
dc.contributor.editorNiranjan, M.
dc.identifier.citationSun , Y , Tino , P & Nabney , I 2002 , Visualization of incomplete data using class information constraints . in J Winkler & M Niranjan (eds) , Uncertainty in Geometric Computations . Springer , pp. 165-174 .
dc.identifier.otherPURE: 184325
dc.identifier.otherPURE UUID: c4ee13bc-8309-4dbc-bb42-43e7220fda79
dc.identifier.otherdspace: 2299/3975
dc.descriptionCopyright Springer.
dc.description.abstractWe analyse how the training algorithm for the Generative Topographic Mapping (GTM) can be modifed to use class information to improve results on incomplete data. The approach is based on an Expectation-Maximisation (EM) method which estimates the parameters of the mix- ture components and missing values at the same time; furthermore, if we know the class membership of each pattern, we can improve the generic algorithm by eliminating multi-modalities in the posterior distribution over the latent space centres. We evaluate the method on a toy prob- lem and a realistic data set. The results show that our algorithm can help to construct informative visualisation plots, even when many of the training points are incomplete.en
dc.relation.ispartofUncertainty in Geometric Computations
dc.titleVisualization of incomplete data using class information constraintsen
dc.contributor.institutionCentre for Computer Science and Informatics Research
dc.contributor.institutionDepartment of Computer Science
dc.contributor.institutionSchool of Physics, Engineering & Computer Science

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record