dc.contributor.author | Adams, R.G. | |
dc.contributor.author | Butchart, K. | |
dc.contributor.author | Davey, N. | |
dc.date.accessioned | 2009-10-21T10:09:48Z | |
dc.date.available | 2009-10-21T10:09:48Z | |
dc.date.issued | 1999 | |
dc.identifier.citation | Adams , R G , Butchart , K & Davey , N 1999 , ' Hierarchical Classification with a Competitive Evolutionary Neural Tree ' , Neural Networks , vol. 12 , no. 3 , pp. 541-551 . https://doi.org/10.1016/S0893-6080(99)00010-6 | |
dc.identifier.issn | 0893-6080 | |
dc.identifier.other | dspace: 2299/3981 | |
dc.identifier.uri | http://hdl.handle.net/2299/3981 | |
dc.description | Original article can be found at: http://www.sciencedirect.com/science/journal/08936080 Copyright Elsevier Ltd. DOI: 10.1016/S0893-6080(99)00010-6 [Full text of this article is not available in the UHRA] | |
dc.description.abstract | A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson’s IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets. | en |
dc.language.iso | eng | |
dc.relation.ispartof | Neural Networks | |
dc.title | Hierarchical Classification with a Competitive Evolutionary Neural Tree | en |
dc.contributor.institution | School of Computer Science | |
dc.contributor.institution | Centre for Computer Science and Informatics Research | |
dc.contributor.institution | Science & Technology Research Institute | |
dc.contributor.institution | School of Physics, Engineering & Computer Science | |
dc.description.status | Peer reviewed | |
rioxxterms.versionofrecord | 10.1016/S0893-6080(99)00010-6 | |
rioxxterms.type | Journal Article/Review | |
herts.preservation.rarelyaccessed | true | |