University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Molecules and Dust Grains in AGB Stars in Nearby Galaxies—the Influence of Metallicities

        View/Open
        903713.pdf (PDF, 180Kb)
        Author
        Matsuura, M.
        Zijlstra, A.A.
        Wood, P.R.
        Sloan, G.C.
        Groenewegen, M.A.T.
        Lagadec, E.
        van Loon, J.T.
        Whitelock, P.A.
        Bernard-Salas, J.
        Menzies, J.W.
        Cioni, M-R.L.
        Feast, M.W.
        Harris, G.J.
        Attention
        2299/4133
        Abstract
        We have obtained infrared spectra of carbon stars in four nearby galaxies—the Large and Small Magellanic Clouds, the Sagittarius dwarf spheroidal galaxy, and the Fornax dwarf spheroidal galaxy. Our primary aim is to investigate mass-loss rate and molecular bands of these stars as a function of metallicity, by comparing AGB stars in several galaxies with different metallicities. These stars were observed using the Infrared Spectrometer (IRS) onboard the Spitzer Space Telescope which covers 5–35 µm region, and the Infrared Spectrometer And Array Camera (ISAAC) on the Very Large Telescope which covers the 2.9–4.1 µm region. HCN, CH and C2H2 molecular bands, as well as SiC and MgS dust features are identified in the spectra. We find no evidence that mass-loss rates depend on metallicity. Carbon stars are strongly affected by carbon production during the AGB phase; primarily mass-loss of carbon-rich stars are driven by amorphous carbon dust grains, which explains the little metallicity dependence of mass-loss rate for carbon-rich stars. We found that C2H2 bands are prominent features at 3–15 µm among extragalactic carbon stars, which is not always the case for Galactic carbon stars. We argue that the difference is caused by systematically high C/O ratios in low-metallicity environments.
        Publication date
        2007
        Published in
        AIP Conference Proceedings
        Published version
        https://doi.org/10.1063/1.2818993
        Other links
        http://hdl.handle.net/2299/4133
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan