University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes

        Author
        Middleton, D.R.
        Jones, A.R.
        Redington, A.L.
        Thomson, D.J.
        Sokhi, R.S.
        Luhana, L.
        Fisher, B.
        Attention
        2299/5287
        Abstract
        Industrial sources of nitrogen oxides range from boilers and metal furnaces to fossil fuel power stations. Current UK regulatory practice for these plumes adopts a fixed proportion of nitrogen dioxide, as a simple and conservative method of assessment. The method of Janssen is another possible approach. The aim of the present paper is to use a fundamental description of plume chemistry to investigate the sensitivity of nitrogen dioxide and ozone to changes in the background pollutants. The newly developed Met Office's NAME III Lagrangian dispersion model was used to simulate the inhomogeneous mixing of an idealised plume with background air. Concentrations of nitrogen oxides in the plume and of ozone and hydrocarbons in the background were carried on Lagrangian particles and mixed together. Titration of background ozone and formation of secondary pollutants were studied as background concentrations were varied systematically. We present a range of model results depicting the plume chemistry. Raised concentrations of nitrogen dioxide appeared on the plume edges, especially at night. Ozone was reduced in the plume region by day and by night, but in daylight, with sufficient hydrocarbons, increased ozone is formed further downwind. We compared the model results with the limiting case from the Janssen method; the limiting values for the NO2:NOx ratio were of similar magnitude. The rate of increase of the ratio to the Janssen photochemical limit depended on the atmospheric stability, as this affects the turbulent mixing in the plume. We discuss possible application of the work as an alternative to empirical regulatory approaches for managing NO2.
        Publication date
        2008
        Published in
        Atmospheric Environment
        Published version
        https://doi.org/10.1016/j.atmosenv.2007.09.056
        Other links
        http://hdl.handle.net/2299/5287
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan