University of Hertfordshire Research Archive

        JavaScript is disabled for your browser. Some features of this site may not work without it.

        Browse

        All of UHRABy Issue DateAuthorsTitlesThis CollectionBy Issue DateAuthorsTitles

        Arkivum Files

        My Downloads
        View Item 
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item
        • UHRA Home
        • University of Hertfordshire
        • Research publications
        • View Item

        Bounded-depth threshold circuits for computer-assisted CT image classification

        Author
        Albrecht, A.
        Hein, E.
        Steinhofel, K.
        Taupitz, M.
        Wong, C.K.
        Attention
        2299/5347
        Abstract
        We present a stochastic algorithm that computes threshold circuits designed to discriminate between two classes of computed tomography (CT) images. The algorithm employs a partition of training examples into several classes according to the average grey scale value of images. For each class, a sub-circuit is computed, where the first layer of the sub-circuit is calculated by a new combination of the Perceptron algorithm with a special type of simulated annealing. The algorithm is evaluated for the case of liver tissue classification. A depth-five threshold circuit (with pre-processing: depth-seven) is calculated from 400 positive (abnormal findings) and 400 negative (normal liver tissue) examples. The examples are of size n=14,161 (119 ×119) with an 8 bit grey scale. On test sets of 100 positive and 100 negative examples (all different from the learning set) we obtain a correct classification close to 99%. The total sequential run-time to compute a depth-five circuit is about 75 h up to 230 h on a SUN Ultra 5/360 workstation, depending on the width of the threshold circuit at depth-three. In our computational experiments, the depth-five circuits were calculated from three simultaneous runs for depth-four circuits. The classification of a single image is performed within a few seconds.
        Publication date
        2001
        Published in
        Artificial Intelligence in Medicine
        Published version
        https://doi.org/10.1016/S0933-3657(01)00101-4
        Other links
        http://hdl.handle.net/2299/5347
        Metadata
        Show full item record
        Keep in touch

        © 2019 University of Hertfordshire

        I want to...

        • Apply for a course
        • Download a Prospectus
        • Find a job at the University
        • Make a complaint
        • Contact the Press Office

        Go to...

        • Accommodation booking
        • Your student record
        • Bayfordbury
        • KASPAR
        • UH Arts

        The small print

        • Terms of use
        • Privacy and cookies
        • Criminal Finances Act 2017
        • Modern Slavery Act 2015
        • Sitemap

        Find/Contact us

        • T: +44 (0)1707 284000
        • E: ask@herts.ac.uk
        • Where to find us
        • Parking
        • hr
        • qaa
        • stonewall
        • AMBA
        • ECU Race Charter
        • disability confident
        • AthenaSwan